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FOREWORD

This report was prepared by ZONA Technology, Inc. the prime contractor, and its team member
(Duke University/Research Institute) for the Air Force Office of Scientific Research, Arlington,
Virginia. It describes the work performed under an Air Force sponsored STTR Phase I contract
No. F49620-99-C-0050 in response to the Topic No. AF99T019 entitled “Nonlinear Reduced
Order Modeling of Limit Cycle Oscillations of Aircraft Wings.” The contractual period was
from August 01, 1999 through June 30, 2000. Major Brian Sanders of AFOSR/NA was the

program manager.

The contributors of this report are: Mr. P.C. Chen (principal investigator) and Dr. D.D. Liu of
ZONA Technology; Professor K.C. Hall (principal investigator of Research Institute) and
Professor E.H. Dowell of Duke University as the Research Institute team members.

During the course of the present phase of this research, the technical advice and assistance that
the ZONA team received from Major Brian Sanders of AFOSR is gratefully acknowledged.
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CHAPTER 1

INTRODUCTION

1.1 Limit Cycle Oscillations

Limit Cycle Oscillations (LCO) are known to occur on various operational vehicles. In
particular, LCO has been a prevalent aeroelastic problem on several current fighter aircraft. It
usually occurs for aircraft with external stores throughout the transonic flight regime (Refs 1-4).
Complicatcd by the aircraft-store system, its mechanism still remains to be fully understood.
Meanwhile, a business jet wing LCO was also reported recently (Refs 5,6). This has been a
serious concern since there are few analytical techniques available for LCO prediction and an
insufficient understanding of its physics.

LCO can be characterized as sustained periodic oscillations which neither increase or decrease in
amplitude over time for a given flight condition. Using an s-domain unsteady aerodynamic
model of the aircraft and stores, Chen, Sarhaddi and Liu (Ref 7) have shown that wing/store
LCO can be a post-flutter phenomenon whenever the flutter mode contains low unstable
damping. This type of flutter mode is called a “hump mode”. Since the aircraft structure usually
contains structural nonlinearity, such as friction damping, this amplitude-dependent friction
damping can suppress the growth of amplitude, thus resulting in a steady state oscillation. This
is known as the nonlinear structural damping (NSD) model of the wing/store LCO. Although not
thoroughly proven through tests or numerical simulations, results of the NSD show excellent
correlation with flight test LCO data of F-16 throughout subsonic and transonic Mach numbers.

On the other hand, other researchers, notably Cunningham and Meijer (Ref 8) believe that the
wing/store LCO is due largely to transonic shock oscillation and shock induced flow separation.
This is called the Transonic Shock/Separation (TSS) model. Edwards has suggested the TSS
model and viscous effects are two major factors that cause transonic LCO for wings. He also has
studied the shock buffet phenomenon in addition to transonic LCO (Ref 9). It should be noted,
however, that there is no conflict between the NSD model and the TSS model in that both

physical effects may contribute to LCO.

Note that the method in Ref 7 used a damping correlation technique for LCO-onset prediction,
whereas that of Ref 8 is a semi-empirical method that requires steady and unsteady data input
from wind tunnel measurement.

1.2 LCO Prediction Methods

Recent renewed interest in LCO is motivated by the need to better predict and understand fighter
LCO and also by the rapid advent of CFD methodology in aeroelasticity. Currently, there are
two potential computational approaches for LCO prediction/investigation: the time-marching
approach using a high-level CFD code such as CFL3D (Ref 10) developed and supported by
NASA/Langley, and the Frequency-Domain POD/ROM EigenMode approach (Ref 11)
originated by Dowell and Hall of Duke University. The former is a conventional time-domain




CFD method whereas the latter is a frequency-domain CFD method using aerodynamic
eigenmodes.

For nearly twenty years, the aerospace industry has been lacking of a viable, efficient CFD
method for transonic flutter applications. The time-marching CFD unfortunately remain
inefficient as a practical tool.

Under an AFOSR/STTR Phase I contract, ZONA has recently conducted a feasibility study on
the simulation of transonic LCO for a supercritical NLR7301 airfoil using the CFL3D/Navier-
Stokes code. It was found that the time-marching LCO solution is turbulence-model dependent
and time-step sensitive. One LCO solution case typically would take 96 hours on a IGHz CPU

computer.

Earlier work of Bendiksen (Ref 12) and recent work of Sheta et al (Ref 13) also used time-
marching CFD approach for Euler transonic and N-S incompressible LCO simulations,
respectively. Based on the cases studied by ZONA, the time-marching Euler simulation of a
transonic LCO requires one half of the computing time required of a Navier-Stokes simulation,
due to the reduction in grid points. The computing time required for incompressible Navier-
Stokes LCO simulation is about two orders of magnitude less than a transonic Navier-Stokes
LCO simulation, due to the absence of transonic nonlinearity, thus allowing much coarser time
steps and a reduction in subiterations. For transonic Navier-Stokes simulation of LCO, the
requirements in time steps, grid, subiterations, etc., become much more stringent, resulting in
days of computing time for one LCO case. This leads to the conclusion that, if a transonic
Navier-Stokes simulation were demanded, a time-marching approach would be computationally
inefficient as a viable approach for realistic 3D transonic LCO prediction/investigations.

On the other hand, the Frequency-Domain POD/ROM (Proper Orthogonal Decomposition /
Reduced Order Model) method of Duke University is considered a recent breakthrough in the -
transonic computational aeroelasticity. Within the last five years, the Frequency-Domain
POD/ROM method of Dowell and Hall has been proven to be highly efficient and shown to be
widely applicable to aeroelastic proolems for turbomachinery cascades, control surface freeplay,
airfoil/wing flutter and LCO (e.z., Refs 11, 14-16, Hall and Dowell, 3 Papers SDM2001
presented in Appendix A-C of this report). As evidenced by their recent studies, under
AFOSR/STTR contract support, the Frequency-Domain method with the Harmonic Balance
scheme is about two-orders of magnitude faster than conventional time-marching methods.

For example, the 3D Time Linearized code can generate the needed aerodynamic model in one
day for a given Mach number and flutter points take less than 1 minute per Mach number on a
workstation computer.

1.3  Frequency-Domain POD/ROM EigenMode Approach

Reduced-Order Models (ROM) EigenMode

The eigenmodes of a time-linearized system, which may be thought of as aerodynamic states,
were computed and subsequently used to construct computationally efficient, reduced order




models of the unsteady flow field. An important advantage of the eigenmode based reduced
order modeling technique is that once the eigenmode information has been computed, reduced
order models can be constructed and used to calculate the response at different frequencies and
mode shapes for almost no additional computational effort. Furthermore, only a very few
eigenmodes or states (degrees of freedom) need to be retained in the model to accurately predict
the unsteady aerodynamic response, making the method ideally suited for rapid flutter
calculation and active control.

The POD Technique

The Proper Orthogonal Decomposition (POD) technique, also known as Karhunen-Loeve (Ref
12) expansions, was originally introduced to determine and model coherent structures in
turbulent flow fields. Using the POD approach, one examines a series of “snapshots” of
experimental or computational data, each at a different instant in time. These solution snapshots
are used to form a small and more compact eigenvalue problem that is solved to determine a set
of optimal basis functions for representing the flow field.

Frequency-Domain POD/ROM

Hall, Thomas, and Dowell (Ref 11) developed a frequency-domain form of the POD technique,
and applied it to transonic flows about airfoils. In particular, they used a time-linearized CFD
analysis to compute unsteady small-disturbance flow solutions for vibrating airfoils in the
frequency domain over a range of frequencies. Basis vectors were then extracted from this
frequency-domain data set using the POD technique. The resulting basis vectors were then used
to construct low degree of freedom reduced-order models of the unsteady flow. Finally, the
reduced-order aerodynamic model was combined with a structural dynamic model resulting in a
compact, but accurate, flutter model.

Harmonic-Balance Method for Nonlinear LCO (Refs 14, 15)

In conjunction with the frequency-domain POD/ROM inethod, the harmonic balance (HB)
technique can be used in the treatment of nonlinear LCC problems for oscillating wings (with
stores). The harmonic balance technique is used to recast the proposed Euler equations into a set
of “higher-order” equations of like harmonics. After introducing a pseudo-time term into the
harmonic-balance equations so that they may be solved by time marching, these equations are
solved by conventional CFD techniques. The method has a number of advantages over the more
conventional time domain solutions. Because the solutions are computed in the frequency
domain, the time-marching algorithm is only used to converge the solution to steady state. Thus,
accelerating techniques, including pseudo time-marching with multi-grid acceleration can be
used. Moreover, for problems where “engineering accuracy” is required, the harmonic balance
series can be truncated into just a few harmonics. The result is that the proposed harmonic
balance method is potentially two-orders of magnitude faster than conventional time-marching
methods for determining LCO.




1.4  Merits of the Frequency-Domain Approach

There are several definite advantages of using the frequency-domain approach. First, the
frequency-domain harmonic balance method, when applied to high-level equations, can be at
least two-orders of magnitude faster than the nonlinear time-domain CFD simulations. Also, this
method retains essential nonlinear features in an aeroelastic system, including nonlinear
structural stiffness and damping as well as large transonic shock excursions including viscosity.
Second, current transonic flutter methods using time-domain/time-marching CFD in conjunction
with various versions of the indicial approach (Batina, Silva, Refs 17, 18) are very tedious and
computationally expensive and their accuracy usually depends on the indicial motion imposed.
By contrast, the frequency-domain formulation of POD/ROM directly solves for convenient
aerodynamic mode shapes which can be stored and repeatedly applied for a large range of
frequencies; hence, its a much more efficient and accurate method. Third, the frequency-domain
approach with an eigenvalue solution method is a familiar practice to the structures/loads and
flutter engineers. The proposed method after ZONA’s further modification is expected to be
well accepted within the industrial environment.

1.5  ZONA Technology’s R&D in LCO

In recent years, ZONA has been extensively engaged in the R&D of LCO including its
prediction methodology, control and F-16 and F-18 LCO data correlation. ZONA has
collaborated closely with Lockheed-Martin/LMTAS and the Seek Eagle office of Eglin AFB on
F-16 wing/store LCO investigations. The results including the definition of a NSD model were
presented in two AIAA/SDM papers (Refs 7,19, Chen et al, Mignolet et al). Under a recent
NAVAIR contract, ZONA also worked closely with team member Boeing/ St Louis on a
successful R&D in the reconfigurable adaptive control of the F-18 LCO. (Ref 20, Nam et al).
Supported by NASA/Langley, onging development of the CFD/CSD interfacing using BEM
solver (Refs 21,22, Chen et al) will provide a new spline methodology for tightly coupled
aerodynamic-structural interaction for 3D multiple mode LCO studies in Phase II.

1.6 STTR Phase I

In August 1999, the AFOSR awarded an STTR Phase I contract to the ZONA Technology
(ZONA) team to develop innovative computational aeroelasticity methodologies for
understanding, predicting and controlling critical nonlinear aerostructural interaction (e.g.,
LCO/flutter) phenomena. The ZONA team, consisting of ZONA Technology, Inc. and Duke
University (Professors Earl Dowell and Kenneth Hall), has successfully accomplished the STTR
Phase I contract. The recent work of Duke University deals with the further generalization of
POD/ROM EigenMode method for 2-D/3-D flutter and LCO solutions (Refs 14,15,16).

Under this STTR contract, ZONA has generalized the structural compatible model, provided a
3D flutter solution methodology and conducted a 2D CFD simulation of transonic LCO (Ref 23).




1.7 Phase I Achievements

Significant milestones have been reached through the work of Phase L These are in four related
categories. Firstly, the modeling and prediction of flutter and LCO of an airfoil and control
surface with structural freeplay in 2D transonic flow has been accomplished. Secondly, the
modeling and prediction of flutter and LCO of an airfoil undergoing single degree of freedom
pitch motions due to nonlinear aerodynamic effects associated with large (inviscid) shock
motions in 2D flow has been achieved. Thirdly, the modeling and prediction of flutter of a 3D
flow about an elastic wing has been accomplished. Note that in the latter category, we are
modeling the nonlinear static or steady flow effects in the transonic regime even though the
aerodynamic model is dynamically linear, i.e., the shock motions are assumed to be proportional
to the airfoil motion in this model. And finally, a 2D numerical simulation of the NLR 7301
supercritical airfoil limit cycle oscillations was performed using the time-marching procedure of
the CFL3D code. This fourth category of work is to establish benchmarks for the viscous
POD/ROM methodology developed in Phase I and to be developed in Phase II.

In Chapters 2-5 we provide a summary of the approach and results obtained in each of these
categories. These accomplishments provide a firm foundation on which to build for the Phase 11

work.




CHAPTER 2

TRANSONIC LIMIT CYCLE OSCILLATION ANALYSIS OF AN
AIRFOIL WITH CONTROL SURFACE FREEPLAY

Summary

The transonic flutter and limit cycle oscillations of an airfoil with control surface freeplay have
been determined using a new aerodynamic modeling technique that provides greater physical
insight and understanding by tracing the true root locus of the corresponding linear aeroelastic
system. This in turn enables a very computationally efficient harmonic balance technique to be
used in determining the nonlinear limit cycle oscillations.

New physical insights gained include the rapid change in flutter mode that occurs in the
transonic Mach number range. This phenomenon has been observed in experiments, but has not
been previously predicted theoretically. With respect to LCO, these are the first results available
in the transonic range for the configuration studied. The model also predicts significant changes
in LCO behavior as a function of Mach number. However, these are as yet unconfirmed by
experiments. Up to high subsonic Mach numbers, the flutter and LCO results are similar to
those previously found at low Mach numbers.

Introduction

In this work, we will assume the shock motion is sufficiently small such that it is (linearly)
proportional to the airfoil motion, e.g., airfoil motions are less than the equivalent of one degree
in angle of attack. Using an Euler/CFD-based reduced order aerodynamic model, a thorough
study of the flutter boundary with Mach number (M) is first presented in the absence of freeplay.
Particularlv noteworthy are the rapid changes of flutter modal content in the transonic range.
This is attribated in part to the rapid changes of center of pressure location as the mean shock
position changes with Mach number. These changes in the modal response content are also
found in the limit cycle oscillations (LCO) which are encountered when control surface freeplay
is present. Indeed for LCO, the modal content may change at a fixed Mach number when the
dynamic pressure or flow density is varied.

Below M=0.80, the LCO and flutter oscillations are qualitatively similar to those previously
found at low Mach number where earlier analyses and experiments have been carried out.
However, the response behavior in the transonic flow regime is notably different. Of special
interest is the occurrence of flutter in a narrow range of Mach number for pitch and flap (control
surface) dominated motions. Moreover, beyond a certain high transonic Mach number (after the
mean shock position reaches the trailing edge of the airfoil), neither flutter nor limit cycle
oscillation occurs.




Significance of LCO

LCO is known to occur on various operational aerospace flight vehicles. This has been a source
of serious concern since there are no analysis techniques available that have predicted LCO in an
operational aircraft. There have been some semi-empirical techniques developed to correlate
with LCO that have been observed in flight, and these are useful for understanding the LCO that
has occurred (see Ref 24). However these techniques are not as satisfactory for the design of a
new vehicle or the substantial modification of an existing one, e.g., new stores to be carried by
an aircraft. In this regard, it should be noted that LCO may be beneficial as well as detrimental.
Without the nonlinearities that lead to LCO, the onset of flutter may lead to catastrophic failure
of the structure. Hence if we can understand and predict LCO, perhaps we can take advantage of
these nonlinearities to shape more favorable responses of the aircraft leading to enhanced safety

and performance.

Sources of Nonlinearities

The principal sources of the nonlinearities essential to the LCO are a subject of current debate
among the experts in the field. The candidate sources are several:

Fluid
e Shock motions
e Separated flow

Structure

e Free-play

e Geometric, e.g., a nonlinear relationship between strain and displacement
e Material, e.g., dry friction

Also there is a further distinction between a static versus a dynamic nonlinearity. An important
example of this is the role of a shock wave in the fluid. If a shock is present, then its creation is
the result of a dynamic nonlinear process. However once a steady flow is established, and if the
airfoil motion is sufficiently smali, then the shock motion will also be small and proportional to
the airfoil motion. Hence in this situation, the shock itself represents a nonlinear static (time
independent) equilibrium and the motion may be treated as a dynamically linear perturbation
about the mean shock position. In most of the following discussion, we assume a dynamically
linear model of the shock motion, but also include a structural (dynamic) nonlinearity, i.e.,
freeplay in the connection of the control surface to the airfoil.

Airfoil with Control Surface Freeplay Model

A sketch of the configuration is shown in Fig 2.1. It is a conventional typical section model
except that the spring that attaches the control surface to the airfoil has a nonlinear freeplay. The
elastic restoring torque or moment provided by this spring is shown in Fig 2.2 as a function of
control surface or flap rotation angle, 5. The freeplay angle is 8. Note that when S1is less than 4,
there is zero restoring torque, while for S greater than 6, the spring stiffness is the nominal value
in the absence of freeplay. The freeplay may be thought of as creating a stiffness or (uncoupled)




natural frequency of the spring that varies as a function of flap amplitude. This interpretation is
shown in Fig 2.3. Here the flap uncoupled natural frequency normalized by the nominal value in
the absence of freeplay is shown as a function of flap amplitude, £, normalized by the freeplay
angle, 5. Note that given a certain flap amplitude, there is a corresponding "equivalent" flap
frequency. Of course for a linear system the control surface or flap frequency would have a
fixed value independent of flap amplitude.
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Figure 2.3 Equivalent Nonlinear Flap Frequency Versus Flap Rotation

Thus, conceptually and computationally, one may proceed as follows. First, one determines the
neutrally stable motions of the system in the absence of freeplay for various flap frequencies
from zero to the nominal value. Then one determines the corresponding neutrally stable
nonlinear limit cycle motion, namely the flap amplitude, from Fig 2.3.




This approach has been used successfully at low Mach number and the theoretical results
correlated with experiments (see Refs 25, 26).

Computational Fluid Dynamic (CFD) Modeling and its Modal Decomposition

A typical CFD model is very large in terms of the number of equations required to be solved.
And this makes such models problematical for aeroelastic (and some other) analyses. For
example, the CFD model used in the present work is based upon the Euler equations of fluid
mechanics and has a spatial grid of 65 x 97 (6035) mesh points. At each grid point there are four
fluid variables to be determined. Thus the CFD model per se has about 25,000 unknowns to be
determined by solving 25,000 equations. This is a doable task if the structural motion is known.
However if this CFD model is to be combined with a set of structural equations of motion, and
solutions are to be found for many combination of structural and fluid parameters, then the
calculation using the original CFD model quickly gets out of hand. Thus the search for an

alternative approach.

Several semi-empirical methods have been derived to address the computational feasibility issue.
These as well as the method to be described and used here are discussed in more depth in Ref 11.
Among these methods are variations on the notion of a Padé approximant. The method used
here is based upon the observation that virtually all CFD models can be thought of as having a
modal composition. The simplest conceptual set of modes is perhaps the fluid or aerodynamic
eigenmodes of the CFD model, and these modes have been used successfully in creating reduced
order models (ROM) that are computationally and conceptually attractive. See the discussion in
Ref 11 and the forthcoming Ref 27.

However it turns out that determining the aerodynamic eigenmodes of a large CFD model is
itself a challenging task. Hence a method called Proper Orthogonal Decomposition (POD) is
employed here and in (Ref 11). '

For the present analysis, 63 POD modes are found from the frequency responses (aerodynamic
transfer functions) in flap, pitch and plunge respectively at 21 frequencies at eacli Mach studied
using the original CFD model. Based upon previous experience, one might use an even smaller
number of aerodynamic modes than this. However, even with this generous number of modes,
the computations described below were all done in a few days. The computational grid used for
the CFD model is shown in Fig 2.4.
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(b) Grid Motion

Figure 2.4 NACA 0012 Grid: 65 x 97 Computational Nodes, Outer Boundary Radius=15¢

Linear Instability (Flutter)

First, consider the flutter behavior for this
system in the absence of freeplay. The
stability of this system was assessed by
constructing a root locus (migration of the true
aeroelastic eigenvalues) as a function of the
nondimensional airspeed or dynamic pressure
for each Mach number. The usual structural
and flow parameters are defined in (Refs 24,
25).

A representative root locus result is shown in
Fig 2.5 for M=0.80. Root locus results are
available for all Mach numbers used to
construct the flutter boundary which is shown
in Fig 2.6.
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Note especially that the "plunge" aeroelastic mode has a root that for low "gain" (or flow
velocity or dynamic pressure) moves to the left and becomes more stable. But then as the flow
velocity increases, it reverses direction and moves into the right half plane becoming unstable.
And then at even higher velocities, it moves back into the left hand plane and becomes stable
again. However by then, the pitch mode has moved into the right half plane and become
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unstable. Hence the aeroelastic system remains unstable once the plunge mode becomes again
stable at this velocity and Mach number.
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Figure 2.6 Mach Number Flutter Trend: o = 0.0 deg.

All the other roots in this figure which appear to originate from near the origin are essentially
aerodynamic roots, and these roots all move off into the left half plane indicating they are always
stable and increasingly so as the dynamic pressure increases. As the Mach number becomes
higher, the most critical root may change. For example, at M=0.85 the pitch root becomes
unstable first, and for M=0.90, it is the flap root. At yet higher Mach numbers, no roots become
unstable. For brevity these other root loci are omitted here. Taking all of this information from
the root loci at various Mach numbers, the flutter boundary trend with Mach number can be
determined, and is presented in Fig 2.6.a.

There are several interesting features to this flutter boundary. Up to M=0.80, the root-loci are
rather similar, and it is always the plunge root that is critical for flutter. Starting at M=0.80, the
pitch root also shows instability, and at M=0.825 and 0.85, it is most critical for flutter. At
M=0.875 and 0.90, the flap mode is most critical for flutter, and for M=0.925 to at least M=1.1,
no flutter is observed for a non-dimensional flow velocity up to at least one. The corresponding
frequencies of the flutter oscillations are shown in Fig 2.6.b. Note that in Fig 2.6.a when two
data points are shown for say the plunge root at a fixed Mach number, the lower velocity point is
when flutter begins, and the higher velocity point is when the root returns to the stable left half
plane and flutter ceases in that root. Note also the narrow range of Mach number where the
change in flutter mode occurs. Results of this type have been observed in experiments where
they are called "chimneys" (see Ref 28).

Limit Cycle Oscillations

Now the freeplay is added to the model and thus LCO may occur. As is perhaps obvious from
physical intuition, when freeplay is added, the stiffness of the control surface freeplay is reduced
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for small motions. Hence one expects limit cycle oscillations to occur below the flutter

boundary, i.e., at flow velocities less than those shown in Fig 2.6.a. Indeed a few moments of

reflection may lead one to expect that once the linear flutter boundary shown in Fig 2.6.a is

exceeded, then exponentially explosive flutter will occur when the nonlinearity is due to

freeplay. That is found to be the case as shown by the present analysis and also by the analysis
and experiments of Refs 25 and 26.

The LCO results shown in Fig 2.7 have several interesting features. First of all, the limit cycle
amplitude is normalized by the freeplay angle, . The theory predicts and experiments agree,
(see Ref 26), that when the results are normalized in this manner, they are universal. That is, the
limit cycle amplitude is proportional to the freeplay angle. Secondly, for the lowest velocity at
which LCO may, a finite disturbance is required to generate LCO at this lowest velocity and for
a small velocity range thereafter. LCO's for any disturbance, no matter how small, will only
occur when the flutter velocity for a flap natural frequency of zero is exceeded, at a somewhat
higher velocity, about 0.22 in Fig 2.7.a. The unstable LCO's, which are shown along with the
stable LCO's (those that are observed in an experiment), provide a measure of the level of
disturbance required to initiate the LCO at the lower flow velocities.

The results Fig 2.7 are typical until one reaches the higher transonic Mach numbers where linear
theory predicts flutter will cease. At the highest Mach number considered here where flutter and
LCO may occur, M=0.90, the LCO has a somewhat different character. Again the LCO is first
encountered at the minimum velocity at which flutter will occur over the range of flap
frequencies. But now the corresponding flap frequency is zero. Moreover, when the flow
velocity increases to higher values, there are two stable limit cycles. The nature of the
disturbances to the system would determine which of these two LCO would be observed in'a
wind tunnel experiment or in flight. For brevity, the M=0.9 results are not shown.
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Figure 2.7 Limit Cycle Behavior: M = 0.80, o = 0.0 deg.

For additional details of the work presented in this Chapter, please see the paper (Ref 14)
included in Appendix A.
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CHAPTER 3

NONLINEAR INVISCID AERODYNAMIC EFFECTS ON TRANSONIC
DIVERGENCE, FLUTTER AND LIMIT CYCLE OSCILLATIONS

Summary

Aerodynamic nonlinearities may be give rise to LCO, and these may be either stable (favorable)
or unstable(unfavorable). An example of the former is shown here as the nonlinear counterpart
of classical linear aeroelastic divergence. An example of the latter is also shown here as the
nonlinear counterpart of single-degree-of-freedom pitch flutter. Future work will be directed
toward the study of the nonlinear counterpart of classical bending/torsion flutter where similar
methods may be used.

Introduction

Limit cycle oscillations (LCO) in aeroelastic systems appear to be more prevalent in transonic
flow than in subsonic flow. Hence it has been thought that at least for some configurations the
source of the nonlinearity that leads to LCO is in the aerodynamic flow. See Ref 29 and 26 for a
discussion of structural nonlinearities relevant to LCO. Thus, we consider the effects of
nonlinearities arising from inviscid transonic aerodynamics. The principal physical effect of
interest is the relatively large motion of the shock wave as the amplitude of say the pitch motion
of the airfoil becomes sufficiently large. This in turn leads to a movement of the center of
pressure with amplitude. Hence one expects to see an effect of amplitude on the neutrally stable
motions that may occur. Moreover this may lead to limit cycle motions rather than the
catastrophic exponentially growing oscillations predicted by time linearized models. The latter
models capture the effect of the mean position of the shock and small shock motions about this
mean position by assuming the shock motion is dynamically linear, i.e., the shock motion is
proportional to the airfoil motion. This is not true for dynamically nonlinear aerodynamic
models that allow for larger and more general shock motions including the possible appearance
and disappearance of a shock during a cycle of airfoil motion. The latter is our concern here.

We will consider two distinct aeroelastic phenomena, divergence and flutter, and their associated
limit cycle oscillations. To keep the discussion focussed on the fundamental physical
phenomena, and to ease the interpretation of the inherently complex phenomena, only a single
structural degree of freedom will be studied. However the aerodynamic model will be a state-of-
the-art computational fluid dynamics (CFD) based upon the Euler equations of nonlinear,
rotational inviscid aerodynamic theory.

Here we emphasize that the solution technique is for a large system of ordinary differential
equations in time, which represents the time variation of the fluid unknowns at each spatial grid
point in the CFD model. The unknowns are four in number at each grid point for a two-
dimensional Euler flow and, for example, could be density, the two scalar components of
momentum, and the total energy at each grid point. The present CFD model has about 17,000
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total flow variable unknowns, and therefore an efficient solution method is imperative to carry
out the studies reported here.

Harmonic Balance Solution in the Frequency Domain

The pioneering work of Ueda and Dowell, (Ref 30) and Lan and his colleagues, (Ref 31) should
be recalled. Ueda and Dowell used a describing function technique whereby the dominant
harmonic was extracted from a time marching CFD model, LTRAN2, using both indicial and
harmonic motions of the airfoil. They considered a two degree of freedom typical airfoil section.
Lan et al used the method of harmonic balance to study the unsteady transonic aerodynamics for
flutter and limit cycle oscillation prediction. In their work, they used the transonic small
disturbance potential flow model, as did Ueda and Dowell, and only considered a single
harmonic. In the present work, we employ the Euler equations of fluid dynamics and also retain
multiple harmonics in the aerodynamic model. It is found that using several harmonics improves
the theoretical prediction of the aerodynamic forces. However in the aeroelastic analysis, when
the fluid and structural models are coupled, only a single harmonic is used. The effects of higher
harmonics on this single harmonic are retained as they are found to be significant in the fluid
model.

The Aeroelastic System and Its Solution

The structural equation of motion is a simple single degree of freedom model in pitch. See Fig
3.1 for a depiction of the airfoil and the CFD grid used in the numerical calculations. By
carefully selecting the pitch axis and mass ratio, we can insure that the system will either
undergo classical linear aeroelastic divergence or flutter. Divergence can occur when the
aerodynamic "negative" stiffness overcomes the structural stiffness, while flutter may occur
when the aerodynamic negative damping overcomes the structural damping. As will be shown,
each of these classical linear aeroelastic phenomena has a distinctively different limit cycle or
nonlinear behavior.
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Figure 3.1 NACA 64A010A Computational Grid
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The Mach number for these studies is M=0.80
and a NACA 64A010A airfoil is considered.
The NACA 64A010A is a symmetric (10.6%
thickness ratio) variant of the "Ames" AGARD
156 benchmark section. The elastic axis is
considered at the mid-chord. Employed for the
CFD  calculations is an  “O"-type
computational mesh with 65 x 65 radial and
circumferential nodes that has an outer
boundary radius of 10 chord lengths. The
center of pressure (xcp) as a function of static
angle of attack is shown Fig 3.2 where it is
seen the center of pressure moves from 32%
chord to 40% chord as the angle of attack
varies from 0.0 to 5.0 degrees. This is a key
characteristic of the flow field for LCO.

Steady Angle of Attack, o” (degrees)

o ..--l....l.v..l....l..-,l,..;
020 025 030 035 040 045 050
Airfoil Center of Pressure, XfC

Figure 3.2 Center of Pressure Variation
with Angle of Attack: NACA 64A010A
Airfoil Section, M = 0.80

Linear and Nonlinear Divergence

Divergence is perhaps the simpler of the two phenomena since by definition it is time
independent, i.e., we are dealing with a static linear instability and its nonlinear counterpart. In
this case, the structural equation of motion becomes an equation of static equilibrium. And for
the aerodynamic model, we only need to determine the lift and moment about some appropriate
axis as a function of angle of attack. For small angle of attack, we will recover the classical
linear aeroelastic divergence phenomena. But the question is, what are the effects of the
nonlinearity?

Qualitatively one can anticipate the effect of the aerodynamic nonlinearity by examining the
aerodynamic moment variation with angle of attack. A necessary condition for divergence to
occur is that the aerodynamic moment be positive in the same direction as the twist angle.
Moreover, if the nonlinear aerodynamic model predicts a moment less in magnitude than that
predicted by linear aerodynamic theory, the effect of the nonlinearity will be to stabilize the
divergence. And vice versa if the nonlinear theory predicts an increase in aerodynamic moment
over that given by linear theory. Hence by examining the slope of the moment vs. angle of
attack curve with increasing angle of attack, we will know whether the effect of the nonlinearity
is favorable or unfavorable.

In the example below, the effect is favorable. That is, once the divergence dynamic pressure for
a small angle of attack is exceeded (this is the classical linear aeroelastic divergence dynamic
pressure), then the angle of twist of the pitch spring remains finite and smoothly increases from
zero beyond the divergence dynamic pressure.
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See Fig 3.3 where the angle of twist is plotted 6

vs. the non-dimensional dynamic pressure. i
Also shown are results with an initial angle of
attack. In this latter case, there is some twist
over the full range of dynamic pressure.
Indeed even if the initial angle of attack is only
a few degrees, it would be difficult to detect
the classical divergence dynamic pressure
experimentally for this example. For readers
who have studied buckling of systems in the

Twist Angle, a (degrees)
w
1

o ] 1 1 1

presence of imperfections (e.g. beams, plates 00 01 02 03 04 05 06 07 08
or shells with initial curvature), this behavior Nondimensional Dynamic Pressure, A=q_c/K_ (radians)
will be familiar. Figure 3.3 Divergence and Post-Divergence

of an Airfoil Including Transonic Nonlinear
Inviscid Aerodynamics: NACA 64A010A
Airfoil Section, M = 0.80, Elastic Axis
Location, a =e¢/b = 0.0

In this example, recall the center of pressure moves from 32% chord at low angles of attack to
40% chord at 5.0 degrees angle of attack. This is the principal reason for the stabilizing effect of
nonlinear aerodynamics on the post-divergence condition. Had the change of the slope of the
aerodynamic moment curve been in the opposite direction, then the angle of twist vs. dynamic
pressure curve would have bent the other way. That is, for dynamic pressures below the classical
divergence dynamic pressure, there would be non-trivial (non-zero) twist angles that represent
possible static nonlinear equilibrium solutions. Intuitively one recognizes that these latter
solutions would themselves be unstable, i.e., such results would be interpreted physically as the
magnitude of the disturbance required to generate non-trivial twist at dynamic pressures below
the classical divergence dynamic pressure. In our studies to date, only the stable nonlinear effect
has been observed for statically divergent systems. However, this is not to say that unstable
nonlinear divergence systems may not be encountered for some other parameter combinations.

Of course, divergence is a very special case of nonlinear aeroelasticity as it is for linear
aeroelasticity, because the frequency of oscillation is zero when divergence and post-divergence
occurs. Thus we now turn to an oscillatory case.

Flutter and Associated LCO

Now consider single-degree-of-freedom flutter in pitch. Here the classical flutter arises from a
negative damping in the aerodynamic moment beyond a certain reduced frequency. However the
reduced frequency at which the aerodynamic damping moment becomes negative increases as
the angle of pitch oscillation increases. Hence the reduced velocity decreases as the angle of
pitch increases, which suggests that this will lead to an unstable LCO as indeed it does.

In the example considered, we have moved the elastic axis to 20% chord to preclude divergence
and to induce flutter.
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It should be emphasized that in the present analysis, we are using a single harmonic to represent
the pitch oscillation. However in the calculation of the aerodynamic moment, we include up to
three harmonics to determine the effect of higher harmonics on the first harmonic of the
aerodynamic moment. It turns out that the effect of the third harmonic is negligible. Indeed, if
one only retains a single harmonic in the aerodynamic analysis, the results are qualitatively
correct and have fair quantitative accuracy.

Results for the first harmonic for the moment about the pitch or elastic axis are shown in Fig 3.4.
These results are for two harmonics retained in the aerodynamic analysis. Note that the results at
a reduced frequency of zero were those used in the divergence analysis discussed previously. Of
course, a transformation of the pitch axis is used for the divergence analysis.
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Figure 3.4 Unsteady-Lift and Moment for Various Pitch Amplitudes: NACA 64A010A
Airfoil Section, M = 0.8, ag = 0.0 deg., Elastic Axis Location, a = e/b = -0.6, Two Harmonics
Employed in Harmonic Balance Expansion

While structural damping is readily included in the analysis, it will be helpful to understand the
essence of the results by first considering the solution for zero structural damping.

Zero Structural Damping

In this case, a neutrally stable oscillation will occur when the imaginary part of the aerodynamic
moment becomes zero. This will occur at some reduced frequency for a particular angle of pitch
oscillation (and other parameters fixed such as Mach number). Then one can solve for the
frequency of this neutrally stable oscillation. For sufficiently small motions, this is the flutter
solution; for larger motions, we determine a limit cycle oscillation. The solution procedure then
is to select an amplitude of oscillation, determine the reduced frequency at which the imaginary
part of the aerodynamic moment is zero from Fig 3.4, and then determine the frequency of the
oscillation. Note this is essentially the same computational procedure as for a classical flutter
solution, except now the reduced frequency, the frequency of oscillation, and the reduced
velocity are all functions of the pitch amplitude. It should be noted however that just because the
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imaginary part of the aerodynamic moment vanishes (i.e., the aerodynamic damping becomes
zero), that alone does not insure that a neutrally stable oscillation will occur. This is because the

frequency determined must be physically possible.

Large Pitch Moment of Inertia Now if the 5 —
mass ratio or moment of inertia is larger, a not
uncommon circumstance, then the flutter or
LCO frequency is simply equal to the
structural pitch natural frequency. With this
approximation, the results of Fig- 3.5 are
obtained for both zero and non-zero structural
damping. Note that the curves bend to the left
which is indicative of an unstable LCO. That
is, these results are to be interpreted as the
amplitude of a disturbance required to initiate .
explosive flutter below the classical flutter 2 3
velocity for this single-degree-of-freedom pitch Reduced Velocity, U/o,c
oscillation. Figure 3.5 LCO Amplitude Versus
Reduced Velocity: NACA 64A010A Airfoil
Section, M = 0.80, o = 0.0 deg., Elastic Axis
Location, a = e/b = -0.6.

2r wg-0

Pitch Amplitude, &(degrees)

Effects of Finite Pitch Moment of Inertia

For general values of moment of inertia and structural damping, the solution algorithm proceeds
as follows. First select a Mach number and pitch axis, and for a range of pitch amplitudes,
determine the first harmonic of the aerodynamic moment (including higher harmonics of the
aerodynamic model and their effect on the fundamental harmonic). Then for a given pitch
amplitude, choose a reduced frequency and determine the flutter or LCO oscillation frequency.
This frequency will be proportional to the pitch structural frequency, of course. With the flutter
or LCO frequency determined, and the reduced frequency selected, one then knows the flow
velocity corresponding to the chosen pitch amplitude. Finally, determine the structural damping
value necessary to give a neutrally stable flutter or limit cycle oscillation. From this perspective,
the flutter condition is simply the neutrally stable motion that may exist at small angles of twist,
and the LCO are the neutrally stable oscillations that may exist when the pitch amplitude is
finite. Of course the flutter or LCO may become unstable when it is perturbed (e.g., by
perturbations in the amplitude of oscillation), and this is indeed the case in the example treated
here.

Up to this point, we have assumed that the pitch moment of inertia is well above its asymptotic
value. Hence the flutter frequency is the same as the structural natural pitch frequency.
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Now we consider the more general case and a
range of pitch inertias such that the flutter
frequency is no longer precisely equal to the
structural natural frequency in pitch. Results
are shown for non-dimensional pitch inertias of
200,100,50,37.5 and 25 in Fig 3.6. These are
for LCO amplitude versus reduced velocity.
The asymptotic or large pitch inertia results are
also shown for reference.

As expected, for sufficiently large pitch inertia,
say greater than 200, the asymptotic results are
good approximations. However for pitch
inertias less than 100, the results show a more
sensitive dependence on pitch moment of
inertia. For sufficiently small pitch moment of
inertia, of course, no flutter or LCO is
possible.

For additional details of the work presented
included in Appendix B.
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Figure 3.6 LCO Amplitude Versus

Reduced Velocity for Various Pitch Inertias:

NACA 64A010A Airfoil Section, M = 0.80, a. -

= 0.0 deg., Elastic Axis Location, a=e/b = -

0.6.

in this Chapter, please see the paper (Ref 15)
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CHAPTER 4

THREE DIMENSIONAL TRANSONIC AEROELASTICITY USING
PROPER ORTHOGONAL DECOMPOSITION BASED REDUCED ORDER
MODELS

Summary

The POD/ROM method has been demonstrated for the flutter analysis of a three-dimensional
transonic wing configuration. We have shown that the number of ROM DOF's necessary to
create accurate models is on the order of a few dozen as is the case in two-dimensions. We have
also shown that it is unnecessary to compute a completely new ensemble of solution snapshots
based on the vibratory mode shapes for each new structural configuration that might be under
consideration. One can simply compute a set of snapshots based on some basic wing motions at
a number of frequencies. Then snapshots only at the end points of the frequency range of
interest need to be computed for the specific mode shapes of the configuration of interest. These
end point snapshots “lock in” the unsteady fluid dynamic characteristics for the particular mode
shapes, and the simple motion snapshots then act to resolve the dominant dynamics of the flow

throughout the full frequency range of interest.

Introduction

Here, we demonstrate how the recently devised proper orthogonal decomposition (POD) based
reduced order modeling (ROM) technique (Refs 11, 32) can be used to model unsteady
aerodynamic and aeroelastic characteristics of three-dimensional transonic wing configurations. -
Although transonic Euler flows are considered in Refs 11 and 32, the initial demonstrations of
the POD/ROM method as presented in these references are for two-dimensional flow and two
structural degree-of-freedom airfoil configurations. Also in Ref 33, an application of the
POD/ROM technique to the well known vortex lattice method has been presented.

In extending the POD/ROM technique to three-dimensions, two primary issues have been of
concern. First, the size of the computational fluid dynamic (CFD) model will in general be at
least an order of magnitude greater than for two-dimensions. Whereas a typical CFD model for a
realistic two-dimensional configuration might have on the order of 10's or even 100's of
thousands of degrees of freedom (DOF), a CFD model for a three-dimensional configuration
might easily have on the order of at least hundreds of thousands if not millions or more DOF's.
In two-dimensions, we have found that very accurate ROM's with on the order of only a few
dozen DOF's can be devised using the POD/ROM methodology. A first issue to address has thus
been whether or not in three-dimensions one can also generate accurate ROM's, which require at
most a few dozen DOF's.

The second concern is, for any variation of the structural properties of a given wing under

consideration, will a completely new ensemble of solution vector “snapshots” have to be
computed in order to devise an accurate POD/ROM. A basic aspect of the POD/ROM method is
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that an ensemble of solution vectors is first assembled by computing unsteady CFD solutions at a
number of discrete frequencies within a frequency range of interest for the unsteady structural
motions that are also of interest. In two dimensions, this step is relatively straight forward since
one only has to consider a few possible motions, e.g., pitch and plunge.

In three-dimensions however, the wing vibratory mode shapes will be different for each different
structural configuration of a given wing. There can in fact be an infinite number of unsteady
motions (or at least a substantial number of motions equivalent to the number of DOF's of the
discrete structural model). Thus the second concern about extending the POD/ROM to three-
dimensions has been whether or not it is necessary to compute a completely different ensemble
of solution snapshots for every possible structural configuration. For example, say one computes
solution snapshots for a given wing configuration based on the wing's particular vibratory modes
shapes in order to develop a POD/ROM to model the configuration's aeroelastic characteristics.
Then the question is, if the structural make-up of the wing changes, does one have to compute a
whole new ensemble of solution snapshots for the same wing, but for the different set of
vibratory modes shapes.

Fortunately in addressing these two issues, we have found that accurate POD/ROM's with just a
few dozen degrees of freedom can in fact be created for a realistic transonic three-dimensional
configurations. This is true even though in the model problem to be shown subsequently, the
CFD model is easily an order of magnitude larger than anything we have previously studied in
two-dimensions. Furthermore, we have discovered that a “fundamental” ensemble of solution
snapshots, based on wing motions that need not be related to the structural modes under
consideration, can be assembled as a first step. Accurate POD/ROM's for a given wing
configuration can then be created by simply adding to this “fundamental” ensemble, the
snapshots corresponding to actual wing structural modal motions solely at the frequencies
corresponding to the end points of the frequency range of interest. In general, these two
snapshots prove to be sufficient to “lock in” the conditions corresponding to the particular
structural motion, and indeed the fundamental ensemble of solution snapshots is sufficient to
reveal the unsteady dynamics of the fluid dynamic model. The fundamental ensemble of
snapskots can be used again and again even as the structural ‘mode change, and thus the
computational cost of having to compute an entirely new snapshot ensemble for every new
structural configuration is greatly reduced.

POD/ROM Methodology

In the following, we will be considering inviscid three-dimensional Euler flows. More
specifically, linearized (about some nonlinear background steady flow) unsteady frequency-
domain CFD solutions to the Euler equations are computed. The POD/ROM procedure can be
considered as a “wrapper” around any typical CFD method, and the CFD method we have
employed for the present analysis is a variant of Ni's (Ref 34), approach to the standard Lax-
Wendroff method. The frequency domain CFD method in effect represents a linear system
formulation of the unsteady fluid dynamic model, i.e.

Aq=-B¢ 4.1)
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where q is an N dimensional vector (N is the number of mesh points time the number of
dependent flow variables) of the unknown flow variables a each mesh point in the CFD domain,
and 'is the L dimensional vector (L is the number structural mode shapes) of modal coordinates
for the structural model. A is the N x N fluid dynamic influence matrix, and B is the N x L matrix
which relates the flow solver boundary conditions to each particular mode shape. Both A and B
are functions of the background flow and unsteady frequency @. The structural equations for the
wing configuration being modeled within the flow can be written as

D¢ =-Cq (4.2)

where D represents the L x L structural influence matrix (i.e., D= -»’M +K where M and K
are the generalized mass and stiffness matrices, and C is the L x M matrix which represents the
discrete integration used to obtain the generalized forces associated with each modes shape based
on the unsteady flow q. When Egs (4.1) and (4.2) are put together,

e ol “

The resulting Eq (4.3) is a fully coupled aeroelastic system of equations, which for nontrivial q
and ¢, represents an eigenvalue problem with @ being the eigenvalue. Any eigenvalues with a
positive real part imply the aeroelastic system is unstable.

The problem with constructing and solving this eigenvalue problem is that A is simply too large
for realistic configurations. As mentioned in the introduction, N can easily be on the order of
10,000 or 100,000 for two-dimensional configurations, and on order of 100,000 to 1,000,000 or
even more for three dimensional configurations. For such large cases, even attempting to set up
A is well beyond the memory limits of todays largest computers.

The basic premise of the POD/P.OM methodology is that we assume the unknown flowfield
solution vector q can be expressed as a Ritz type expansion of the form

a=Y. &b K<<N (4.4)

where £, is a generalized coordinate sometimes referred to as an augmented aerodynamic state

variable, and ¢, is the corresponding Ritz vector. Eq (4.4) can also be written in matrix form as

o
S

Sx

| |
q=0¢, where ©={¢ ¢, ... ¢ | and &=

(4.5)
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Here, @ is an N x K matrix whose k’th column is the shape vector ¢,, and {is the K

dimensional vector of augmented aerodynamic state variables &, .

A reduced-order representation of the fluid dynamic and aeroelastic systems can be formulated
by substituting Eq (4.5) into Eq (4.1) and/or (4.2) and pre-multiplying by the Hermitian

transpose ((D”) of @, i.e.

OYADE = D"BL or AE=-B¢ (4.6)

A B|l® A B 0
o 1 sl _ ol (4.7)
C D|l ¢ C D||¢ 0 ‘
If the Ritz approximation is a good one, (K << N), and Eqs (4.6) and (4.7) will represent much
smaller systems that can readily be solved using conventional eigenvalue techniques.

and

The next question becomes what are good choices for the Ritz vectors ¢, that will in fact result

in good Ritz approximations. Previous studies as detailed in Refs 11 and 32 have demonstrated
that shape vectors derived via the proper orthogonal decomposition technique (see for instance
Refs 35, 36, and 37) are an excellent source. For the sake of brevity, the of details are omitted
here, but a discussion of how the shapes are derived can be found in Refs 11 and 32. The basic
premise behind their formulation is that a number solution "“snapshots” are directly computed for
a number of discrete frequencies and unsteady structural motions of interest. From this ensemble
of solution vectors, the POD shapes are easily derived by solving a small (the size of the number
of snapshots) eigenvalue problem. The first few POD modes describe the most dominant
dynamic characteristics of the fluid dynamic system, and as such, the POD shapes have proven
to be an excellent set of Ritz vectors for fluid dynamic and/or aeroelastic models.

Model Problem

The configuration under consideration is the AGARD model 445.6 wing (Refs 38, 39). Thisisa
45 degree quarter chord swept wing using the NACA 64A004 airfoil section that has an aspect
ratio of 3.3 (for the full span) and a taper ratio of 2/3. Fig 4.1 illustrates the computational mesh
employed for this configuration. The grid is an “O-O” topology that employs 49 computational
nodes about each airfoil section, 33 nodes normal to the wing, and 33 nodes along the semispan.
The outer boundary of the grid extends five semispans from the midchord of the wing root
section. The particular structural configuration of the wing is referred to as the 2.5 ft. weakened
model 3 (again see Refs 38 and 39).
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(a) Wing surface and symmetry plane grids (b) Outer boundary grid
Figure 4.1 AGARD 445.6 Wing Grid Topology

We have examined the computed wing surface and symmetry plane steady flow pressure
contours for freestream Mach numbers of 0.960 and 1.141. A relatively weak shock can be seen
at the trailing edge for M=0.960. This shock appears to get stronger at M=1.141. The wing
section is quite thin 4%, so a strong shock is not really expected. Comparing contours, our
flowfields look very comparable to those of Lee-Rausch and Batina (Ref 40), although they
employed a much larger mesh. We have examined the computed wing surface and symmetry
plane steady flow pressure contours for the Mach numbers of 0.960 and 1.141. A relatively
weak shock can be seen at the trailing edge for M=0.960. This shock appears to get stronger at
M=1.141. The wing section is quite thin (4%), so a strong shock is not really expected.
Comparing contours, our flowfields look very comparable to those of Lee-Rausch and Batina
(Ref 40), although they employed a much larger mesh.

Computational Steps for Flutter Analysis

The first step is to compute the “snapshots” for one Mach number and several structural modes,
say five. These are overnight runs, so the wall clock time is about 24 hours to do this. Moreover
we have shown that if the structural modes change, then the computation of all of the
“snapshots” does not need to be repeated. This reduces the number of new “snapshots” needed
and the corresponding computer time by about a factor of five.

The second step involves taking the above data and constructing the reduced order model which
requires about 15 minutes of computer time.

With the information from steps one and two above, in the third step each aeroelastic solution for

a given Mach number and set of structural modes and one combination of all parameters takes a
fraction of a second. This provides the true frequency and damping (i.e., this is a p method) for
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each aeroelastic mode. To construct a root locus using say 100 dynamic pressure values takes
less than one minute.

Flutter Results

Fig 4.2 shows the eigenvalue root-loci when sweeping through various mass ratios (to which
there is a corresponding flutter speed index) when solving the aeroelastic eigenvalue problem
posed by the reduced-order aeroelastic model (Eq (4.7)) for various Mach numbers. Solution
snapshots are computed for the first five given wing mode shapes for reduced frequencies
(k=wb/U,) from k = 0.0 to k= 0.5 in Ak = 0.1 increments. This configuration flutters for
frequencies less than 0.5, and as such, solution snapshots for & > 0.5 are unnecessary. This
results in a total of 55 available POD shape vectors. In Fig 4.2, the curves represent the
eigenvalues corresponding to the primarily structural natural modes as mass ratio is varied. Our
method also determines the aeroelastic modes originating from the fluid dynamic modes of the
POD/ROM. For the range of mass ratios (0 < p < 500) swept through in these parametric
analyses, the fluid dynamic modes are very damped, and as such lie to the left and outside of the
eigenspectrum range we show. As can been, for each of the Mach numbers, the first structural
mode tends to be the critical flutter mode. For the highest Mach number however, the third
structural mode can go unstable if the mass ratio is large enough. Also from this figure, it is
evident that it is unnecessary to use all 55 of the available POD shapes. If fact, with less than
one half of the POD modes (25 for instance), relatively converged results (in the sense of POD
mode refinement) can be achieved.

Fig 4.3 shows the computed POD/ROM flutter speed and flutter frequency ratios, along with
experimental data (Ref 38), and data from two other computational methods (Refs 40, 41), as a

function of Mach number.

As can be seen, using our methodology, we produce the well known transonic flutter speed dip,
and our results are all within the same tolerance to the experimental results as the other
computational methods. Gupta (Ref 41), does show better agreement with experiment at the two
supersonic Mach numbers, and Gupta attributes this better agreement to better CFD grid
refinement. In future work, we will also address this issue.
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The Use of Alternate Modal Excitations for Snapshots

One of the key concerns towards in the POD/ROM method to three-dimensional flows has been
whether or not an entire set of solution snapshots must be computed for each possible structural
configuration of interest. That is, say we wish to consider a similarly shaped wing that has a
slightly different structural configuration, which in turn means the wing vibratory mode shapes
are different. Does this mean that one has to go through and compute a whole new ensemble of
solution snapshots based on these new structural motions in order to do a flutter analysis for the
new wing configuration. Fortunately, although a few snapshots based on the new modal motion
will need to be computed, the larger number of snapshots computed at numerous frequencies will
be unnecessary. The snapshets computed from a previous wing structural configuration will still
serve the purpose. That is, a couple of solution snapshots will be needed for the new structural
motions, however, these will only need to be computed at the end points of the frequency range
of interest. Fig 4.4 demonstrates how this works.

Fig 4.4 shows the real and imaginary parts of the coefficient of the generalized aerodynamic
force corresponding to the first mode pressure acting through the first mode shape as a function
of reduced frequency at a Mach number of 0.960. The coefficient of the generalized
aerodynamic force is defined as

N OE q% [[#.p,(ch, a4 (4.8)

®Tr

where g, = p, U2 /2 is the freestream dynamic pressure and ¢, is the root chord length. In this
definition, p; (k) represents the frequency dependent unsteady pressure resulting from a wing
deformation motion of

==, (49)

The curves presented in Fig 4.4 are based on the actual solution snapshots and thus are what we
desire the POD/ROM to model. In Fig 4.4.b, the POD/ROM of C,,, based on snapshots for
each of the five structural mode shapes at frequencies of 4#=0.0 and #=1.0 (for a total of 10
snapshots) is compared against C, for the actual snapshots for all frequencies between 4#=0.0
and k=1.0. As can be seen, the POD/ROM matches at the end points of the frequency range as is
expected, however this crude POD/ROM performs rather poorly for the intermediate

frequencies. Of course, if we use snapshots at all the frequencies between £=0.0 and k=1.0, the
POD/ROM would exactly reproduce the data.
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Figure 4.4 Generalized Force Modeling with Unrelated Mode Shape Snapshots

Next, in Fig 4.4.c, a new POD/ROM for C, now based on solution snapshots unrelated to the

actual mode shapes is shown. The simple wing motion snapshots are for a full wing plunge
motion (up/down), full wing pitch about the quarter chord, a first bending type of motion (wing
is fixed at the root, and the z coordinate component of deflection varies linearly with span), and a
first twist type of motion (wing is fixed at the root, and the pitch varies linearly with span) for
frequencies from £=0.0 to &=1.0 at 4k = 0.1 increments for a total of 44 solution snapshots. As
can be seen, the POD/ROM in this case also perform very poorly. Unbeknownst however, these
solutions are in fact helping to reveal the dynamics of the system. In fact, when one uses these
snapshots in combination with the actual structural mode snapshots solely at the end points of the
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frequency range of interest, one gets a POD/ROM which produces very accurate results to C, |

as is evident from Fig 4.4.d.

A comparison of the POD/ROM Mach number flutter trends in the case where first, the
POD/ROM is based on solution snapshots corresponding to the actual modal shapes of the wing
to the case where second, the POD/ROM is based on snapshots using the simple wing motion
mode shapes as discussed in the previous paragraph has been made. The results are virtually
identical at all but the highest Mach number. There is some difference at the highest Mach
number, again suggesting supersonic flow is more sensitive for this wing.

For additional details of the work presented in this Chapter, please see the paper (Ref 16)
included in Appendix C. :
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CHAPTER 5

SIMULATION OF TRANSONIC LIMIT CYCLE OSCILLATIONS USING
A CFD TIME-MARCHING METHOD

Summary

We have conducted a transonic LCO investigation for an NLR 7301 airfoil using NASA/Langley
CFL3D/N-S time-marching approach to validate with measured LCO/flutter data of DLR. The
present LCO study is a parallel effort to that of Duke University whose CFD method is based on
a frequency-domain POD/ROM EigenMode approach.

The primary objective of the CFL3D/N-S effort was aimed at to investigate the impact of
turbulent models and computing time on a viable CFD tool for transonic LCO. We found that
the LCO solution is turbulent-model dependent and time-step size sensitive. These issues along
with the possible influence on LCO due to initial conditions and transition points remain to be
subjects for further research.

In using the Spalart-Allmaras turbulent model, the present study for NLR7301 shows that the
time-marching CFL3D computation can predict LCO and with good frequency agreement, which
to a large extent validates the transonic test result of Schewe et al at DLR. However, in order to
obtain a fully developed LCO, this time-marching computation typically requires about 96 hours
of computer time on a 1 GHz computer. In view of its long computing time, a CFD time-
marching scheme such as CFL3D/N-S would be computationally inefficient as a tool for 3D
transonic LCO investigation. The above observation suggests Duke’s frequency-domain
POD/ROM EigenMode approach, for given computer limitation, may very well be the only
viable tool for 3-D transonic LCO investigation at present.

Introduction

Limit Cycle Oscillation (LCO) has been a persistent problem on several current fighter aircraft
and is generally encountered with external store configurations. Denegri (Ref 1) provided a
detailed description of the aircraft/store LCO phenomenon. Norton (Ref 2) gave an excellent
overview of LCO of fighter aircraft carrying external stores and its sensitivity to store carriage
configuration and mass properties.

LCO can be characterized as sustained periodic oscillations which neither increase or decrease in
amplitude over time for a given flight condition. Using an s-domain unsteady aerodynamic
model of the aircraft and stores, Chen, Sarhaddi and Liu (Ref 7) has shown that wing/store LCO
is a post-flutter phenomenon whenever the flutter mode contains low unstable damping. This
type of flutter mode is called the “hump mode”. Since the aircraft structure usually contains
structural nonlinearity such as friction damping, this amplitude-dependent friction damping can
suppress the growth of amplitude, thus resulting in a steady state oscillation. This is known as
the nonlinear structural damping (NSD) model of the wing/store LCO. Although not thoroughly
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proven through tests or numerical simulations, results of the NSD show excellent correlation
with flight test LCO data of F-16 throughout subsonic and transonic Mach numbers.

On the other hand, other long-standing researchers, notably Meijer and Cunningham (Ref 8),
believe that the wing/store LCO is due largely to the transonic shock oscillation and shock
induced flow separation, called Transonic Shock/Separation (TSS) model. Edwards considers
the TSS model and viscous effects are two major factors that cause transonic LCO for wings. He
also delineates the shock buffet phenomenon as opposed to that of transonic LCO (Ref 9). It
should be noted that, however, there is no conflict in the NSD model and the TSS model in that
TSS is only a transonic subset of NSD. That is to say that NSD model could consistently
interpret the LCOs occurrence at subsonic and supersonic speeds as well, whereas TSS can not.

Recent renewed interest in LCO is perhaps motivated by the need of further resolving fighter
LCO and the current advent of CFD methodology in aeroelasticity. There are two potential
computational methods for LCO prediction/investigation: the CFL3D.AE code (Ref 10)
developed and supported by NASA/Langley and the POD/ROM EigenMode approach (Ref 11)
originated by Dowell and Hall of Duke University. The former is a conventional time-domain
CFD method whereas the latter a frequency-domain CFD method, using aerodynamic eigen
modes.

Objectives of CFD Simulation

Using the Navier-Stokes option of CFL3D.AE for LCO investigation, ZONA selects an

NLR7301 airfoil (shock-free design condition at M = 0.747, C, = 0.455) as the case studied.
Primarily, a thorough wind-tunnel transonic LCO/flutter study was performed for a 2D
supecritical wing with NLR7301 airfoil section by Schewe and his associates at DLR (Refs 42-
44). To our best knowledge, Schewe’s work is perhaps the only experimental work available for
measuring 2-D transonic LCO. With Schewe’s data, we began to validate our CFD simulated
results with the following objectives:

Attempt to understand the LCO physics

Investigate the impact on LCO solutions due to different various flow parameters

Evaluate necessary computer resource including computing time required

Establish benchmarks and identify an efficient 3-D CFD method for LCO/flutter prediction.

LCO Study of NLR 7301 Airfoil Using CFL3D

Schewe and Deyhle (Ref 42) conducted an experiment on transonic flutter of a 2-D superecritical
wing with an NLR 7301 airfoil section. The emphasis of this experiment was to investigate the
effect of the flow nonlinearity on the aeroelastic response including transonic dip and transonic
LCO. From the aeroelastic point of view, an aeroelastic experiment of a 2-D wing is more
difficult and complicated than that of a 3-D wing. To validate a CFD methodology with such
valuable data will help accomplishing the present objectives. The following is an account of our
theoretical modeling of the experimental set up.
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. Test Set-up and Equations of Motion

D, K,
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Figure 5.1 Two-Degree-of-Freedom Dynamic Model

Fig 5.1 depicts a simplified model of the 2-degree-of-freedom test set-up. The 2-D wing has a
chord length of 0.3 m (c = 0.3 m) and a span of 1 m (b =1 m). The pitching spring and heaving
spring are attached to the same c¢/4 position. The corresponding 2-degree-of-freedom equation of
motion of the set-up reads,

I T g L S e [ W ol
+ + = 5.D
—s, Ll la 0o D,|la 0 K,|l|a M)

where
m,, is the total mass (m, = 26.64 kg)
1., is the mass moment of inertia about ¢/4 (I,,, = 0.086 kg.m?)
s, is the static unbalance (s, = 0.378 kg.m)
D, and D, are the damping factors of the heave motion (h) and the pitch motion

(o), respectively (D, =829 kg/sand D, =0.197 kg.m*/(rad-s))
K, and K, are the stiffness of the heaving spring and pitching spring, respectively
(K, =121 x 10°N/m and K, = 6.68 x 10’ N-m/rad), and

L(t) and M(¢) are the aerodynamic lift and moment, respectively.
The numerical values of the structural terms in Eq (5.1) can also be found in Ref 43. To perform

the time-marching CFD computation, it is convenient to convert Eq (5.1) from the physical
degrees of freedom to the modal coordinates, i.e.:

h
{ }=[¢1{q} @

a
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where g is modal coordinate and ¢ is the modal matrix of the undamped structure

{—0.1735 0.1004

0.9277

3.403 }

Substituting Eq (5.2) into Eq (5.1) and pre-multiplying the resulting equation by ¢ yield:

2w, Gy 0 w,’ 0 cC, (1)
11 {g ] =g, b¢" 5.3
1] g} + { 0 24, gj g} + { . %2} {a}=a.b¢ {62 Cm(t)} (5.3)

where

o Steady State Results

(7 F%
Ci(t) and Cy(2)

are the undamped natural frequencies of the heaving and pitching
motions, respectively (@, =205.4 rad/s and @, =299.5 rad/s)

are the heaving and pitching damping ratios, respectively (£, = 0.00648

and ¢, = 0.00474). Note that the off-diagonal terms in the damping
matrix are assumed to be zero for simplicity.

is the dynamic pressure, and

are the non-dimensional aerodynamic lift and moment coefficients of the
2-D section of the wing, i.e.:

LO  and c @ = MO

Zobe g be? G

C,(0) =

Ci(t) and Cp(t) are computed by the CFL3D code based on the NLR
7301 full chord length.

Fig 5.2 shows a C-type grid with 273x93 mesh points around the NLR 7301 airfoil. For
validation, we first performed a 2-D steady computation with the Baldwin-Lomax and Spalart-
Allmaras turbulence models assuming fully turbulent flow
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Figure 5.2 C-Type Grid Around NLR 7301 Airfoil (273 x 93)

The comparison of the computed pressure coefficient (Cp) with the experimental data is shown in
Fig 5.3. Good agreement between these two sets of Cp distribution can be seen except at the
20% chord on the suction side. Weber et al (Ref 45) presented a similar result and suggested that
this fully turbulent result can be improved by taking a fixed transition into account. However,
due to the lack of test data in the transition onset location, no fixed transition model is considered

in the present steady and unsteady aerodynamic computations.
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Figure 5.3 Steady Pressure Distribution
CFL3D: Mach No.= 0.753, AOA=-0.08°, Re=1.727x10°
Experiment: Mach No.=0.768, AOA=1.28°, Re=1.727x10°
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] Time Step Size for Convergence

It is well known that the transonic flow characteristics of the supercritical airfoil is very sensitive
to off-design conditions. The position and strength of the transonic shock can change rapidly
due to a small angle-of-attack and/or Mach number perturbation (Ref 46). This indicates that for
transonic unsteady flow computation of supercritical airfoils, the time step must be kept
sufficiently small and the number of Newton sub-iterations within each time step must be
adequate to ensure the solution convergence. On the other hand, this stringent condition for low
speed unsteady flow computation can be largely relaxed.

To show this, we conducted a time-step size study for solution convergence on the NLR 7301
airfoil at M=0.05 and M=0.753 by imposing a sinusoidal motion with oscillatory frequency at 50
Hz and pitching amplitude of 1 degree.

For the transonic case (M=0.753), the time histories of the lift coefficient with N=200/subit=3,
N=800/subit=6, and N=800/subit=9 is shown in Fig 5.4.a, where N is the number of time steps
within each cycle and “subit” is the number of Newton subiterations within each time step. It
can be seen that the solution varies largely from N=200/subit=3 to N=800/subit=6 and thereupon
it varies little up to N=800/subit=9, suggesting that a time step size corresponding to
N=800/subit=9 must be adopted for transonic unsteady aerodynamic computation.

The same type of time histories for the low speed unsteady flow (M=0.05) is shown in Fig 5.4.b,
but with N=800/subit=9, N=200/subit=3, and N=25/subit=3. Little variations of the solutions
from N=800/subit=9 to N=25/subit=3 can be seen, suggesting that a time-step corresponding to
N=25/subit=3 is sufficient for low speed unsteady flow computation. this also indicates that the
transonic LCO analysis requires at least two orders of magnitude more computing time than that
of a low speed analysis. In fact, in the following sections we will show that to obtain a fully
developed transonic LCO time history takes several days of computer time on a 1 GHZ
computer.
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Figure 5.4 Time Step Size for Solution Convergence

. Steady AoA Condition and Static Aeroelastic Equilibrium (SAE) Condition

Based on the complete Eq (5.3), the time-marching computation can then follow with the
resulting SAE condition being the initial condition. Here, the initial conditions in terms of
generalized coordinates are imposed at the values of q;= 0 and q; = q2(0)/2 , see Table 5.2. In
passing, we note that different initial conditions could affect the resulting LCO solution in the
presence of flow nonlinearity. Nonetheless, we merely leave the question of the initial-
condition influence on LCO as a future research topic.
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In Schewe’s experiment, there exist two starting flow conditions: namely, a steady AoA
condition and a static aeroelastic equilibrium (SAE) condition. A steady AOA condition is
defined by the initially selected flow condition, whereas the SAE condition is the subsequent
measured mean AoA position during the steady state oscillation. In terms of our numerical
simulation, the SAE condition is one which obtained from solving the static aeroelastic version
of Eq (5.3), i.e., by imposing a very large structural damping in order to nullify the velocity and
acceleration terms.

Presented in Table 5.1 are the starting flow conditions of Schewe and those of two simulated
methods. The difference in the test and simulated values of the steady AoA condition results
from correlation of the corresponding Cp’s and lift coefficients. The slight discrepancy in the
SAE AoA between two simulated approaches remained to be clarified. Table 5.2 presents the
SAE generalized coordinates as converted from the resulting SAE flow conditions.

Table 5.1 Two Starting Flow Conditions

Steady Static Aeroelastic
c A;?:? Equilibrium
ondition (SAE) Condition
Knipfer et al (Ref 44) M=0.768, aa=1.91° M=0.768, o =1.28°
Weber et al (Ref 45) M=0.753, a=0.6° M=0.753, a=-0.08°
Present M =0.753, o =0.6° M =10.753, a=0.078°

Table 5.2 SAE Generalized Coordinates

Dynamic Pressure ‘ Generalized Coordinates
q:(0) q2(0)

Pdynamic = 15 kPa - 0.0059 - 0.0031

Pgynamic = 12.6 kPa - 0.0051 - 0.0023

Pgynamic = 9.5 kPa - 0.0045 - 0.0017
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e Verification of Flutter Boundary at M = 0.753

Fig 5.5 presents Schewe and Deyhle’s experimental flutter boundary for a 2-D supercritical wing
with NLR 7301 airfoil section (Ref 42). In the subsonic range up to M = 0.74, the critical value
of dynamic pressure is nearly constant. Transonic dip occurs when M > 0.74 where a dramatic
drop of the critical dynamic pressure can be seen. In this transonic dip region, Schewe and
Deyhle reported that various types of LCOs were observed. Using a Fourier transformation of
the Navier-Stokes solver generated unsteady aerodynamics, Knipfer and Schewe (Ref 43)
performed a frequency-domain flutter analysis and concluded that these LCO were genuine
flutter cases. This conclusion can be further supported by the fact that the LCO appears already
at Mach number below the tuffet limit. To verify this, we performed two CFL3D aeroelastic
computations at M = 0.753, one at g, = 9.5 kPa and the second one at g = 15 kPa. In both
computations, the speed of sound is fixed at 254.7 m/s and invariant to the air density.

The time histories of the heaving motion (h) and the pitching motion (a) of these two cases are
presented in Figs 5.6 and 5.7, respectively. As expected, divergent motions at g = 15 kPa and
convergent motions at q. = 9.5 kPa are obtained. This confirms that the LCO of the 2-D
supercritical wing with NLR 7301 airfoil section is indeed a post-flutter phenomenon, which
initiates from a classical flutter instability.
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. LCO Study at M = 0.753 with Various Turbulence Models

LCO is generally caused by the nonlinearity of a dynamic system. The structural set up of the 2-
D supercritical wing section is basically linear, whereas the LCO observed in the experiment
results from unsteady nonlinear transonic flow including effects of transonic shock movement
and possibly shock-induced separation. This suggests that, in order to correlate with the
experimental LCO results, the impact of different turbulence models on the predicted LCO must
be studied first. To do this, we first performed a CFL3D computation with the Baldwin-Lomax
model at M = 0.753, . = 12.6 kPa and Re = 1.727 x 10°. Since the q., = 12.6 kPa condition is
already beyond the flutter boundary, an initially divergent motion at small amplitude is expected
from the CFL3D result. This is verified by the resulting time histories of the h and a motions
presented in Fig 5.8 where the divergent motions up to t = 1.0 sec can be clearly seen. Att=1.2
sec, a sudden increase of amplitude occurs but the divergent rate of the motion decreases.
However, when further extending the time-marching computation from t = 1.5 to 2.8 sec, the
divergent motion slows down yet still sustaining and does not reach a steady state oscillation,
after 96 hours computation on a 1 GHz computer. In many instances of such LCO computing
tasks, the difficulty we faced is that a once started the computation must be carried on typically
for several days until a LCO reveals itself. Otherwise, the computation shall be terminated by
computing time limitation, if a LCO has not yet been reached by then; this undetermined LCO is
marked as a divergent case.
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Next, the CFL3D computation was repeated at the same flow condition but using the Spalart-
Allmaras turbulence model and the result is shown in Fig 5.9. Similar type of divergent motion
up to t = 1.0 sec to that of the Baldwin-Lomax model is obtained. But this time, a steady state
oscillation is finally reached by extending the time-marching computation up to t = 2.4 sec. The
predicted LCO frequency is approximately 34 Hz which correlates well with that of the
experiment. But the predicted LCO pitch amplitude is approximately 4° which is off by an order
of magnitude comparing to the experimental LCO amplitude (what Schewe measured is 0.6°).
Similar disagreement in terms of the LCO amplitude was found by Weber et al (Ref 45). Closer
agreement of the LCO amplitude was obtained by Castro et al (Ref 47) where the wind tunnel
interference effects was included in their CFD simulation. Note that the interference effect is not
considered in the present LCO study and that of Weber et al.
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CHAPTER 6

PHASES I1 /111 PLAN -

Summary

The ZONA Technology/Duke University team proposes a challenging set of tasks to be accomplished in two vears
time that builds upon the very substantial progress already made in Phase I. Specifically, the 2D, Euler Equations
CFD model (developed in Phase I) that uses a harmonic balance solution technique will be extended to include the -
effects of viscosity (Navier-Stokes equations) and multiple structural modes. In parallel the 3D, Euler Equations
CFD time linearized model (also developed in Phase I) which already includes multiple structural modes and uses a
POD/ROM solution method will be extended to now include full dynamic nonlinear effects using a harmonic
balance solution; and then further extended to include the effects of multi-bodies (e.g. wings plus tip missiles and
stores). With each new advance in modeling and solution technique, flutter and LCO analvsis and prediction will be
made and the results compared to existing data for 2D flow over airfoils and 3D flow over wings and wing/stores.
The culminating prediction and analysis will be for the F-16 and F/A-18 aircraft. Based upon the very encouraging
results of Phase I using the POD/ROM and Harmonic Balance solution techniques and in comparison with
benchmarking calculations using a state-of-the-art time marching 3D flow solver (CFL3D), we anticipate that the
computer models to be developed in Phase II (like their Phase I predecessors) will enjoy a very substantial
computational efficiency advantage over other existing unsteady CFD models. Typical computer time reductions are
expected to be a least two orders of magnitude for LCO calculations and even more for flutter boundary analysis
per se.

ZONA Technology, Inc. and Duke University, the ZONA team, jointly hereby propose a three-
phase global program entitled “Nonlinear Reduced-Order Modeling of Limit Cycle Oscillations
of Aircraft Wings and Wing/Stores”. The overall objective of the proposed program is to develop
the frequency-domain POD/ROM/HB EigenMode method in order to further the understanding,
accurate and efficient prediction, and control of LCO/flutter for aircraft wings and wing/stores.

6.1 Program Goals

The overarching goal for the Phase II work is to build on the very substantial progress made in
Phase I and to develop a capahiiity for a highly computationally efficient and physically accurate
mathematical modeling of li:nit cycle oscillations (LCO) and other nonlinear aeroelastic
phenomena. The approach uses the concepts of aerodynamic modes as well as structural modes.
Such models provide substantially improved physical understanding and also more accurate
prediction of LCO in particular and nonlinear aeroelastic responses in general. This capability
may also lead to a rational prediction of buffet onset due to aerodynamically nonlinear
oscillations. Such models will include the following physical effects:

e Three dimensional (3D) as well as 2D flows

Nonlinear as well as time linearized aerodynamic pressures and forces

Multi-body, e.g., wings plus stores, as well as single body (e.g., wing only) configurations
Many as well as few structural modes

LCO (nonlinear) as well as flutter (linear) aeroelastic predictions

6.1.1 The Roadmap: Overall Program Approach

In Fig 6.1, a roadmap to achieve this ambitious set of goals is shown. Concluding with Phase 11,
all of the above capability will be achieved.
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<

>

Phase II, year 2

>

Phase 11!

<

2D Study

CFL3D Time-marching LCO Study

¢ LCO correlation with experiment for

3D Study

NLR 7301 airfoil
e Assess computer resources needed
¢ Impact of turbulence models

Determine frequency
domain approach to be
v computationally advantageous

Nonlinear loviscid Flow

e Euler equations by harmonic balance technique
e Single body, i.e. airfoil
¢ One or two structural modes
o LCO analysis
-conventional airfoil in transonic flow
-bending/torsion DOF

v

Time-linearized Inviscid Flow

» Single body, i.e. wing

¢ Multi-structural modes

¢ POD/ROM technique

o Flutter Analysis
- transonic dip of AGARD 445.6 wing
- Assess computer resources needed

Adding
harmonic balance

Nonlinear Viscous Flow

| # Single body, i.e. airfoil

» N-S equations by harmonic balance

¢ One or two structural modes

» LCO analysis
- supercritical airfoil in transonic flow
- flap motion with free-play

Adding
multi-structural modes

Nonlinear Viscous Flow

» N-S equations by harmonic balance
» Single body, i.e. airfoil
¢ multi-structural modes
* LCO analysis
- supercritical airfoil in transonic flow
- 3 DOF motion including control
surface with free-play

DOF = Degree-of-Freedom

Nonlinear Inviscid Flow

 Euler equations by harmonic balance technique
 Single body, i.e. wing
e Multiple structural modes
¢ LCO analysis
- business jet wing
- another wing to be chosen

Adding
multi-body geometries
e.g., stores

Nonlinear Inviscid Flow

« Euler equations by harmonic balance
* Muiti-body, i.e. wing + store
e Multiple structural modes
¢ LCO analysis
- F-16 with store
- F-18 with store

3D Nonlinear Viscous Flow

ZONA * Multi-body, wing+store
Funded |1 @ multi-structural modes
R&D ¢ LCO analysis

* N-S equations by harmonic balance

- F-16 with stores and with structural nonlinearity
- F-18 with stores and with structural nonlinearity

——» Commercialization

Figure 6.1 The Roadmap: Overall Program Approach
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6.12 Brief Description of the Roadmap

Phase I included:

* Feasibility study of a time-marching CFD/N-S method

e Development of the frequency-domain POD/ROM EigenMode and Harmonic Balance
methods including 2-D nonlinear LCO/flutter/freeplay case studies

* Development of the 3-D time-linearized frequency-domain POD/ROM EigenMode method
including a flutter case study

Phase II will:

e Develop the 2-D N-S version of the above proposed approach

* Extend the geometry capability to 3-D including wing/store configurations

* Generalize the 2-D/3-D methods to include Harmonic Balance technique for nonlinear LCO
analysis

* Include multiple structural mode analysis capability

* Perform case studies including F-16 and F-18 wing/store LCO and business Jet wing LCO

Phase III will be funded by ZONA with the following goals:

* Accomplish the final step of the development — fully develop a nonlinear 3-D Navier-Stokes
version of the proposed method for complex geometry

¢ Perform LCO for fighters F-16 and F-18 with stores including interaction with structural
nonlinearity

* Combine computational advantages of POD/ROM and Harmonic Balance methods

* Once fully developed, a suite of computer codes will be packaged as a software product,
ready for commercialization

6.1.3 Discussion of Phases I, II and III

o Phasel

In Phase I we have put in place two essential parts of this capability. One is that we have
developed a time-linearized 3D aerodynamic model based upon a modal representation using the
method of Proper Orthogonal Decomposition(POD). With this aerodynamic model we have
performed a transonic flutter analysis for the AGARD 445.6 wing and compared these results to
those available in the literature. Our results show good correlation with data obtained by
previous investigators while reducing the computational cost for the aeroelastic analysis by
several orders of magnitude over more conventional time marching CFD analyses. In this
method, an accurate representation of the true aeroelastic eigenvalues and eigenvectors is
obtained and thus physically accurate root loci may be obtained. This aeroelastic eigenmode
information is very valuable for both improved physical understanding and for use by engineers
who will be designing active control devices for aeroelastic systems with smart materials or more
conventional control technology. Typically we find fewer than 50 aerodynamic states are needed
and often many fewer states may be used with acceptable accuracy. The original CFD models
from which the aerodynamic modes are determined have tens of thousands of states in 2D flow
and hundreds of thousands or more in 3D flow.
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Also in Phase I we have developed a dynamically nonlinear aerodynamic model for 2D flow
based upon the harmonic balance method (a Fourier series representing the multi-harmonics of a
nonlinear system). This aerodynamic model has been used to analyze LCO and takes into
account both fluid and structural nonlinearities. These studies include the first systematic study
of LCO due to control surface freeplay in the transonic regime and also have provided new
physical insight into LCO arising from aerodynamic nonlinearities due to large shock motion for
single degree of freedom flutter as well as aeroelastic divergence. Three abstracts have been
prepared and submitted to the 2001 AIAA SDM conference describing the Phase I work and
these are included here as appendices for the convenience of the reader.

o Phasell

The challenge now is to construct and follow a roadmap that will lead to the ultimate capability
that is desired. To that end, consider Fig 6.1 again and now focus on the proposed Phase 11
effort. In Year 1 of Phase II, the 2D nonlinear aerodynamic inviscid flow model developed in
Phase 1 will be extended to include viscous effects and LCO analyses will be done for a few
structural degrees of freedom. This will lead to a significant advance toward our goal of
including viscous flow, nonlinear, and multi-structural mode capabilities. In the same year our
3D, time linearized aerodynamic model will be extended to include inviscid nonlinear effects.
This latter work also builds upon the achievements of Phase I where 3D and nonlinear effects
were first considered separately. In general, our approach to the road map is to add a new
capability (such as viscous flow effects or nonlinearities) first in a 2D model and then to use this
new understanding as a basis for adding the same capability to the 3D flow models.

In year 2 of Phase II, the 2D aerodynamic model will be brought together with a multi-structural
model to demonstrate the feasibility of doing LCO calculations with a many mode model for
both the fluid and the structure. Harmonic balance analyses are often used with a relatively
small number of modes, but this work will break new ground for models of the size typical of
aeroelastic systems, i.e. 10-50 structural modes and a comparable number of aerodynamic
modes. In the same year the 3D flow model will be extended to include multi-bodies, e.g. wing
plus stores. Such an extension is most important in the context of 3D flows.

However this represents a larger technical risk than if we were to first do this work in 2D flow.
Nevertheless we are confident that this work can and be done. LCO analyses will be performed
with this code once it is available.

e Phase lll

With the accomplishments of Phase II, years 1 and 2, in hand a strong foundation for the work of
Phase III will be laid. Also the capability already developed in Phase I and the additional
capability to be developed in Phase II is itself quite substantial and will represent a marked
advance over current methods for LCO and other aeroelastic analyses. In the following sections
are discussed two major themes of the proposed new work. The first theme is concerned with
novel methods for determining LCO for multi-mode structural systems with the aerodynamic
forces represented by 2D or 3D POD/ROM. The second theme addresses the question of how
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we plan to add viscosity to our POD/ROM. With respect to the POD/ROM representation of
more complex wing and body geometries, our initial approach will be to acquire and use existing
methodologies for conventional CFD codes, e.g., the needed more complex computational grids,
and then simply apply our POD/ROM methodology to those more elaborately gridded CFD
models. We anticipate this approach will be successful. However, we are prepared to consider
enhancements of existing CFD methods, if that proves to be needed. For the determination of
LCO and the inclusion of viscosity we anticipate the need for new methodology developments
and hence those are discussed in section 5.0.

6.1.4 The ZONA/Duke Team

ZONA Technology, Inc. (ZONA) and Duke University (Duke) have formed a strong team with a
comprehensive background to handle this challenging project. Professor Hall (P.I.) and
Professor Dowell, one of the world’s leading aeroelasticians, at Duke are the originators of the
proposed ROM/POD method, which has gained much attention in the aerospace community in

recent years.

P.C. Chen (P.1.) and Danny D. Liu at ZONA are the small business counterpart for this project.
For over a decade, ZONA continues to perfect the proven technology in aeroelastic software
such as the ZONASI code in MSC/NASTRAN (Aero Option II), now an industrial standard for
supersonic aeroelastic analysis. Meanwhile, ZONA has an outstanding record in handling U.S.
government contracts as evidenced by ZONA’s successful performance in five ongoing contracts
(since 1995): supported by AFRL/VA (on ASTROS* and VSS), by NAWC/Navy (on Missile
Fin Aeroelastic Tailoring), and by NASA/Langley (on BEM Solver for CFD/CSD Interfacing),
by NAVAIR/Navy (on Reconfigurable Adaptive Control of LCO and ASE instability), by
NAVSEA/Navy (on ERGM Projectile Smart Structure Control). ZONA was awarded three
SBIR/Phase 1l contracts from the above organizations in 1999. This STTR effort between
ZONA and Duke is supported by Boeing as evidenced by the following endorsement letter from
Mr. Rudy Yurkovich.

6.2 Phase II Objective and Anticipated Benefits

The overall Phase Il technical objective is to develop a highly computationally efficient and
physically accurate mathematical modeling of nonlinear aeroelastic phenomena. Such models
provide substantially improved physical understanding and also more accurate prediction of

nonlinear aeroelastic phenomena such as LCO.

Technical Objectives

Based on the very substantial progress made in Phase I, we will achieve the following specific
objectives in Phase II:

1. Development of a 2-D viscous version of the harmonic balance technique.

2. Extension of the geometry capability to 3-D including aircraft/store configurations.

3. Generalization of the 2-D/3-D methods to include harmonic balance technique for LCO
analysis involving aerodynamic and structural nonlinearities.
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4. Inclusion of multiple structural mode capability for large finite element models of aircraft
with stores.
5. Validation of the above methodologies by performing case studies including F-16 and
F/A-18 wing/store LCO and a business jet wing LCO.
Anticipated Benefits

Once the Phase II technical objective is achieved, its anticipated benefits are:

1.

6.3

The technical advantages of the proposed approach over the conventional time-marching
CFD method are as follows:

Computational efficiency

Nonlinear LCO prediction capability

True aeroelastic damping solutions can be obtained

Once fully developed, the proposed method will benefit the AF and the aerospace

community in the following areas;

Becomes an efficient aeroelastic/flutter tool for the industry

Promotes an understanding in the origins of LCO, thus providing effective means to
control LCO

Prediction technique will help resolve the wing/store LCO of F-16 and F-18 aircraft, a
solution urgently needed by Lockheed Martin, Boeing and AF.

Address the transonic tail buzz problem of many next generation aerospace vehicles (e.g.,
F-22, JSF, X-33, X-34, etc.)

Provides a sound foundation and efficient database in frequency-domam for effective
transonic aeroservoelasticity (ASE) and MDO applications.

Phase II Work Plan

The ZONA/Duke team proposes a two-year effort to accomplish the technical objectives of
Phase I1. In order to clearly illustrate the Phase II work plan and its interrelationship with Phase
I and Phase 111, we present an overall program task chart shown in Fig 6.2. This overall program
task chart is derived trom the roadmap of Section 2.0 and explicitly specifies the tasks involved
in the overall program
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2-D STUDY 3-D STUDY
TL | HB | N-S | SM | MM TL | HB |N-§:| SW Ww/S | SM| MM
Phase I Y ™ o ) C) ° ™
445.6
Phase II
° ® ¢ ° ° Q)
Gr1) DLR BIZ JET
Phase 11 . . N . . o R
(yr2) : F-16/18
Phase 111 ° ® ° © © ¢
BIZ JET | F-16/18

L] Yes
®  LCO Validation with Test
¢ Yes, plus Nonlinear Structure

TL = Time-Linearized (Euler), HB = Harmonic Balance (Nonlinear),
N-S = Navier-Stokes (Add viscosity), SM = Several Structural Modes,
MM = Multiple Structural Modes, SW = Single Wing, W/S = Wing/Store

Figure 6.2 Alternative Chart to Roadmap

The Phase II development is planned according to guidelines: (see Fig 6.1 Roadmap)

Nonlinearities that produce LCO are of two types: aerodynamic and structural. In Phase
11, we will develop models that can analyze both types of nonlinearities in a unified way.
At the end of Phase II, we will have the capability to analyze cases in which the structure
alone is nonlinear, and both the fluid and strurture are nonlinear.

The complexity of the aeroelastic system increases as Phase Il advances:
Geometry: 2-D — 3-D/Single Wing — 3-D Wing/Store

Equation Hierarchy: Euler — Navier-Stokes

Nonlinearity:  Time Linearized Approach — Harmonic Balance Approach
Mode: Single Degree of Freedom — Multiple Degree of Freedom
Structural Nonlinearity:  Linear Structure — Nonlinear Structure

In this section, the theoretical formulation of the methodologies shown in Fig 6.1 will be
presented in"details (Sections 6.3.1 — 6.3.7). Selected test cases involving a single wing and two
fighter aircraft with stores configurations are presented in Section 6.3.8. Phase II statement of
work consisting of 11 main tasks are discussed in Section 6.3.9. Program Schedule and
Deliverables are shown in Sections 6.3.10 and 6.3.11, respectively.
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6.3.1 Three-Dimensional Navier-Stokes and Euler Equations

We start with the top-down approach:

The 3-D Reynolds-Averaged Navier-Stokes Equations read:

ou  oF-F), 09G-G,) oH-H,) _, 6.1)
ot ox By oz
where:
p [ pu ] (v ] [ pw
pu pu’ +p puv puw
U=<pvr,F=< puv ¢, G=<pv2+p},H=< psz b
pw puw pow pwe +p
V3 L puh | . pvh [ pwh
( 0 ) 0 ( 0 )
Trx z-yx Tox
F, = Tyy t, G, = 1 Tyy b, H, =9 s 3
Tyr Ty, T,,
(T T TV T e W) (U T Ty V+T), W) Tttt TV + T, W)

and p, p, (u, v, w), e, h are the flow density, pressure, velocity, energy and enthalpy,
respectively. 7..,7,,,7,;,., €tc are the Reynolds stress tensors.

In what follows, we will reduce Eq (6.1) to 3-D and 2-D Euler equations for ihe convenience of
elucidating the frequency-domain POD/ROM approach.

6.3.2 Harmonic Balance

In Phase I, the importance of aerodynamic nonlinearities on LCO was assessed using a novel
two-dimensional harmonic balance (H.B.) technique. With this approach, the unsteady flow
variables can be represented by a Fourier Series in time with spatially varying coefficients. This
assumption leads to a set of harmonic balance Euler equations, which can be solved efficiently
using conventional CFD methods including time marching with local time stepping and multi-
grid acceleration. The two-dimensional Euler equations are: '

u G

ot Ox Oy 62)

where the flux vectors U, F and G are given by
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Next, representing conservation prime variables by sum of harmonics of fundamental frequency
gives:

plx,y, ) = Z R (x,y)e", pu(x,y, 1) = Z U, (x,y)e™
" (6.4)
yo4 ()C, Ys t) = Z V;, (x, y) e'“’" , e (_x, ¥, [) = Z E" (x, y) elam!

"

Requiring each frequency component to vanish independently (harmonic balance) and collecting
terms of like harmonics results in

dU(V) .\ dF(V) . dG(V) _ 0 65)
ot Ox 1% '

where
V={- R, Uy, Vy Ey R, Uy, V., E, -} and

+1°

_aa—lj = iw {'"O'Rm 0-U,, 0-%, 0-E, +1-R,,, +1.U,,, +1.V,,, +1 E, } (6.6)

By adding a ‘pseudo-time’ term, Eq (6.5) can be solved by a conventional CFD solution, i.e.,

v .\ OF(V) s dG(V) . au(V)
or Ox Oy ot

=0 6.7)

Note that harmonic balance equations are similar in form to original Euler equations. Thus,
existing Euler codes can be modified to solve H.B. equations. A two-step Lax-Wendroff scheme
will be used. Also, since only “steady-state” solution is desired, one can use local time stepping,
multiple-grid acceleration techniques and residual smoothing to speed convergence. The method
is computationally very efficient, at least one to two orders-of-magnitude faster than nonlinear
time-domain CFD simulations.

In Phase II, we will use the two-dimensional, nonlinear, harmonic balance aerodynamic code and
add viscosity terms, i.e., we will develop a Navier-Stokes version of this analysis suitable for the
analysis of oscillating airfoils. In addition, we will use this code to perform LCO analysis and
prediction for simple structural models, e.g. plunge and pitch of a typical section for
conventional and supercritical airfoils. In particular, we will perform correlation studies with the
DLR experimental data of the NLR 7301 LCO case.
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In Phase I, a three-dimensional time-linearized unsteady aerodynamic analysis was developed.
In Phase II, this code will be converted to a harmonic balance analysis of three-dimensional
inviscid transonic flows. We will use this three-dimensional analysis to perform LCO analyses
of simple linear wing structural models. We will perform LCO correlation studies with a
business jet wing or other wing to be determined.

In passing, we note the following when using aeroelastic eigenmodes for LCO prediction. The
harmonic balance method has proven to be a very effective method for determining limit cycle
oscillations (LCO) and other nonlinear responses of aeroelastic systems. It is often more
computationally efficient and gives greater physical insight than, for example, time marching
simulations. On the other hand it has some limitations, e.g. it does not allow an investigation of
the possible dependence of the response on the initial conditions. Nor does it allow a precise
assessment of non-periodic and chaotic motions. At best the harmonic balance method can only
approximate a non-periodic motion. In practice these limitations are not often serious
drawbacks; however these observations do suggest that future work may well involve a balanced
consideration of both time simulations and frequency domain (harmonic balance) studies.

Another consideration is the number of harmonics to be retained in a harmonic balance analysis.
If there is a dominant harmonic, a single harmonic may suffice, although it will be important to
assess the effects of higher harmonics on the fundamental harmonic per se. And finally the
algebraic complexity of using the method for multi-modal systems may quickly get out of hand
unless special measures are taken to deal with this issue. We will return to this latter issue as,
even with reduced order aerodynamic modeling of the structure and fluid, the order of the
reduced model will be larger than that often encountered in classical harmonic balance analyses,
i.e., on the order of several tens of states.

6.3.3 Time-Linearized Flow Three-Dimensional Flow Solver

In Phase I, we developed a three-dimensional time-linearized Euler analysis of unsteady flow
abovi a wing. We start with the assumption that the unsteady flow u(x,y,z¢) may be expanded
in a perturbation series of the form

a(x,y,2,8) = U(x, y,z,1) + u(x, y, 2)e'” (6.8)

where U(x,y, z,t) represents the steady background flow, and u(x, y, z) is the complex amplitude
of the unsteady small-disturbance flow arising from the wing vibration, which vibrates at
frequency . Substituting Eq (6.8) into the nonlinear three-dimensional Euler equations, and
expanding the result in a perturbation series in the small-disturbance quantities, one finds that to
zeroth and first order the governing equations reads respectively

FU) LU M) _
ry + ) + > =0 (6.9)
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iwu+-§(—§}—u} +g(€%u)+—§(%u)=0 (6.10)

In a conventional time-linearized analysis, Eq (6.9) and Eq (6.10) are solved using pseudo time
marching and standard CFD techniques. Note that since time does not appear explicitly in either
equation, they both may be solved using computational acceleration techniques such as multiple
grid acceleration, local time stepping, and residual smoothing. The result is that these two
equations can be solved at a fraction of the cost of solving the full nonlinear Euler equations

using conventional time marching.

In Phase I, a simple clean wing model was developed. This CFD analysis used a simple grid
structure that limited the approach to clean wings. In Phase II, this model will be extended to
allow more complicated grid topologies, which will allow us to analyze multi-body
configurations, e.g. wing/store.

6.3.4 Reduced Order Modeling of Time-Linearized Aerodynamic Models

Having developed a three-dimensional time-linearized flow solver, we next consider the
reduction of that model using proper orthogonal decomposition techniques (POD). The idea
behind the frequency domain proper orthogonal decomposition is a simple one. We first
calculate the small-disturbance response of the aecrodynamic system at M different combinations
of frequency and excitation. The solutions, also called “snapshots,” are denoted by q™ for
m=1,2,...,M. These snapshots are then linearly combined to for a smaller number of basis vectors

¢y for k=1,2,...,K where K<M. In other words,
¢, =Qv, for k=12,..,K (6.11)

where the m™ column of Q is just q™. In the proper orthogonal decomposition technique, the
vectors vy are found by solving a small eigenvalue problem of the form

QHQVL- =/1ka (6.12)

Only the eigenvectors vy “iih the largest eigenvalues Ay are used to form basis vectors defined
by Eq (6.11). Q" is the Hermitian of Q.

Having computed the POD basis vectors, we assume that they will provide a useful basis for
computing the unsteady solution at some other frequency and/or external excitation than was use
to general the original snapshots. Thus, we let

q=0f (6.13)

where @ is an NxK matrix whose &A™ column is simply the basis vector ¢y, and £ is a vector of
aerodynamics state variables.

We note that when discretized, Eq (6.10) has the form

Aq=A,q+iowA,q=b, +iwb, (6.14)
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where Ag and A, are independent of the excitation frequency @, and are purely real, and q is the
vector containing u at all the nodes of the CFD grid.

Substitution of Eq (6.11) into Eq (6.14), and projection of the error onto the space spanned by the
basis vectors gives

OADE= A &= Db (6.15)

Finally, the reduced-order aerodynamic matrix Ar, which is much smaller than the original
aerodynamic matrix A, is factored using LU decomposition, and Eq (6.15) is solved for the
unknown aerodynamic state variables. This step is computationally very efficient because the
reduced-order aerodynamic matrix is small, sometimes as small as 10x10, but rarely larger than
100x100. The major expense in constructing the reduced-order aerodynamic model is the
computation of the snapshots; the cost of finding the basis vectors and solution to Eq (6.15) is

negligible by comparison.

Having described the basic reduced-order modeling technique, we next describe how to
incorporate an aerodynamic reduced-order model into an aeroelastic model of flutter. Consider,
for example, a two degree-of-freedom structural dynamic model of a typical section. The
governing equations of motion are of the form

Mh +Kh =f where h={h,a}" (6.16)

and 4 and « are the plunging and pitching degrees of freedom of the typical section. M and K are
the mass and stiffness matrices, respectively.

Note that the aerodynamic force vector f is obtained from integrals involving the pressure at the
surface of the airfoil. When discretized, these integrals may be expressed as

f=Cq (6.17)

where C is a sparse 2xN matrix. Similarly, for the case of airfoil vibration, the vector b on the
right-hand side of Eq (6.14) can be expressed as

b=b, +iwb, =B,h+iwBh (6.18)

where now we have made the assumption that the airfoil motion is harmonic in time although @
may be complex). For large CFD models, finding the eigenvalues is prohibitively expensive. To
reduce the size of the model, we again assume that the number of aerodynamic states can be
reduced using Eq (6.13). Again, projecting the error of the aerodynamic equations onto the space
spanned by the.aeroelastic basis vectors gives the desired reduced-order aeroelastic model, i.e.,

Ay, -O"B, -0"B,|[¢ A, 0 0f¢
0 0 I ht+iowl 0 -1 0 |k h}=0 (6.19)
-Co K 0 h 0 0 M|l
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6.3.5 Reduced-Order Aeroelastic Model for Multi-Degree-Of-Freedom Structures

In Eq (6.19), we have derived a reduced-order aeroelastic model for a two degree of freedom (2

d.o.f) structure, i.e., h= { h,a}T. For multi-degree—of—ﬁ'eeéiom structures, h can also be
interpreted as the displacements of each degree of freedom in the structural model. In this
situation, the size of Eq (6.19) becomes K+2n, where n is the number of structural degrees of
freedom. For a realistic wing structural model, n can be on the order of thousands, rendering Eq
(6.19) a very large size eigenvalue problem. Solving such a large eigenvalue problem would
practically be impossible.

The Modal Approach

To circumvent this problem, we introduce the so-called “modal approach” to Eq (6.19). The
modal approach approximates h by the superposition of the low-order structural modes, i.e.,

h=¥n7 ' (6.20)

where ¥, is the modal matrix whose columns contain the modal data of the low-order structural
modes and n are is the generalized coordinate vector. Since the magnitude of the modes can be
arbitrary, they are usually normalized by the square root of their respective generalized masses,
giving a unit generalized mass matrix. The justification for using the modal approach is based
on the premise that most of the aeroelastic responses are dominated by the lower-order structural
modes. Usually, for a single wing structure, the lowest ten (10) structural modes are sufficient to
accurately represent h. Substituting Eq (6.20) into Eq (6.19) and pre-multiplying the second and

third rows of Eq (6.19) by ‘P yields

_H _MHH 7
Ay, O"B,Y, O"B,Y, AR, 0 0
1 3 I ¢ |
0 0 — ney+io| 0 —1 0 \7 =0 (6.21)
m,. 77 m,. U]
T ) 0 0 I_I
—YTCO [a) ] 20, ¢]

where ®, and m; are the natural frequency and the generalized mass of the i"™ structural mode,

respectively. Now, the size of Eq (6.21) becomes K+2m, where m is the number of structural
modes. Because m is much less than the number of structural d.o.f. n, the size of the aeroelastic
system is substantially reduced.

The Structural/Modal Damping

N\
Note that a structural/modal damping matrix { 2(1)”‘;} has been added to Eq (6.21). With this
\
added matrix, Eq (6.21) will facilitate our subsequent study of LCO. In an earlier LCO study,
ZONA has suggested that the structural damping could play a decisive role in LCO for a
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wing/store system. For LCO study using the proposed method, one could alternatively use Eq
(6.21) to delineate the effects with and without structural damping. Also note that the modal
approach in fact increases the sparseness of the matrices in Eq (6.21). Thus, the eigenvalue
problem of Eq (6.21) can be solved more efficiently by a sparse eigensolver.

6.3.6 Structural Compatible Reduced-Order Aeroelastic Model

One of the technical issues involved in the CFD aeroelastic computations is the displacement
transferal from the structural finite element grid to the CFD surface grid. This technical issue
arises from the problem where the CFD surface grid and the structural finite element (FEM) grid
are considerably different; in their locations and densities. Solving such a displacement
transferal problem of complex configuration such as whole aircraft with external stores is by no
means a trivial task.

In March 1999, ZONA received a two-year contract from NASA/Langley (Ref 21) to develop a
Boundary Element Method (BEM), called the BEM Solver, for the data transferal between the
FEM grid and the CFD surface grid (see Section 6.1, ZONA’s Related Work). By formulating
the data transferal problem as an equivalent solid mechanics problem, the BEM Solver generates
a universal spline matrix [S] which relates the displacements at the FEM grid to the CFD grid
such that

Y =S¥, (6.22)
where P, and ¥, are, respectively, the modal matrix at the CFD grid and at the FEM grid.

With the universal spline matrix [S] at hand, converting Eq (6.21) to a structural-compatible
reduced-order aeroelastic model is straightforward. Substituting Eq (6.22) into Eq (6.21) gives:

) . L ]
Ag, ®"B,S¥, -D"BSY, A 0 0
1 4 1 ¢
0 0 — ne+io| 0 — | 0}47;=0 (6.23)
m,. T] mi ,7
0 I
_¢TSTCD [a;,,f] 20,¢]

Finally, we arrive at the structural-compatible, modal-based, reduced-order aeroelastic model, Eq
(6.23). The size of this model is K+2m, where m is the number of low-order structural modes
and is usually on the order of ten for a single wing structure. Eq (6.23) contains two very sparse
matrices that can be solved efficiently by a sparse eigenvalue solver.

6.3.7 Modeling LCO of High Degree-of-Freedom Nonlinear Systems

The nonlinear system that we wish to model can for the most part be modeled as quasi-linear
nonlinear vector equations of the form
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ioMq+N(q)=0 (6.24)

where q is a very large matrix arising containing the Fourier coefficients of the unknowns in a
harmonic balance analysis, M is the a constant matrix, and N is a nonlinear vector operator
arising from the harmonic balance analysis. Here q would contains the unknown flow solution in
the three-dimensional harmonic balance of the three-dimensional flow field, and also the
structural dynamic modes. Thus, the system may contain hundreds of thousands of degrees of
freedom. This system of equations is solved using pseudo-time time marching. Thus, Eq (6.24)
is solved by marching the equation

%& +ioMq+N(q)=0 (6.25)

in time until a steady state is reached. However, if @ is not known accurately, then Eq (6.25)
will not converge, but will itself go into a mathematical limit cycle. One can show, however,
that the solution q will be nearly correct. The solution can be improved by first computed a
better estimate for @ using a nonlinear Rayleigh quotient, i.e.

; .
N
~ ;.’ﬂ__H(_qI__ (6.26)

Eq (6.25) can then be marched again to improve the estimate of q. This process can be repeated
until convergence. The result is a description of the LCO behavior of a very high dimensional
system, i.e. a nonlinear CFD model coupled to a linear or nonlinear structural model. If Phase II,
this technique will be applied to the harmonic balance flow solver coupled to a linear and/or
nonlinear structure.

6.3.8 Selection of Test Cases

Test cases for the validation of the proposed methodology include:
» NLR 7301 supercritical airfoil transonic LCO case
e MAVRIC-I (Aeroelastic Validation Research Involving Computations) business jet wing
LCO case
e Three F-16/Store LCO cases
e Five F/A-18/Store LCO cases

NLR 7301 Supercritical Airfoil Transonic LCO Case

The details of this case has already been discussed in Chapter 5. This case is selected to validate
the 2-D nonlinear harmonic balance aerodynamic code using the Euler equations and the Navier-
Stokes equations. The accuracy of the 2-D nonlinear harmonic balance aerodynamic code will
be assessed by comparing its predicted LCO frequency and amplitude with the DLR
experimental data whereas the efficiency will be assessed by comparing its computer time with
the CFL3D time-marching computations.
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MAVRIC-I Business Jet Wing LCO Case

MAVRIC-I business jet wing is an ———, Pressure Trans ducer Rows

. . (28 per row, 18 upper, 10 lower)
ongoing wind tunnel test program of O Accelerometers
NASA/Langley aeroelasticity branch. 3 Bending/Torsion Strain Gage
The model is constructed with a simple
stepped aluminum plate providing the
wing stiffness and fitted with end-grain
balsa wood to provide the wing
contour.  Previous experiment has
shown that in the 0.8 to 0.9 Mach
number range, the model motions were
predominantly in the first wing-bending X
mode and exhibited LCO. Figure 6.3 Instrumentation Layout for

Refurbished MAVRIC-I Business Jet Wing Model

Currently, the model is being re-tested in the Transonic Dynamic Tunnel (TDT) as the
MAVRIC-I. Fig 6.3 indicates the location of instrumentation that has been added to the model.
Three chords of unsteady pressure transducers are installed at span stations 0.22, 0.63 and 0.87.
Each chord has 28 upper surface and 18 lower surface close-mounted transducers. Eight
accelerometers are mounted along the leading and trailing edge of the wing and bending/torsion
strain gages are installed at the root. The intent of the retest is to obtain unsteady pressure and
wing response data under conditions of LCO in order to validate CFD codes for such conditions.
This retest program will be complete within 6-9 months.

Because of its simple finite element modeling and simple aerodynamic geometry, the MAVRIC-
I business jet wing model is an ideal LCO test case for validating the 3-D harmonic balance code
for single body (to be developed in the first year of Phase II). Because all harmonics of the
measured time-domain unsteady pressures at LCO can be easily obtained by a Fourier series
techniques, a detailed pressure distribution comparison between the measurements and the
prediction by 3-D harmcuic balance code in terms of frequency-domain harmonics can be
performed. Of course, tne comparison of LCO frequency and amplitude at various Mach
numbers and dynamic pressures will also be conducted.

Three F-16/Store LCO Cases

Through a collaboration project with Lockheed Martin Tactical Aircraft System and Eglin Air
Force Base (see Section 6.1, ZONA’s Related Work), ZONA has established a large database of
the F-16/store configurations including their finite element models and flight test LCO data. In
general, the F-16 aircraft with various stores has experienced three types of LCO; (1) LCO starts
from M = 0.6 and disappears at M > 1.0. This case is denoted as “F-16 LCO Type A”. (2) LCO
appears only in the transonic flight regime. This case is denoted as “F-16 LCO Type B”.
(3) LCO starts from the transonic Mach numbers and sustains into the supersonic flight regime.
This case is denoted as “F-16 LCO Type C”.
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Figure 6.4 Three Selected F-16/Store LCO Cases

In order to validate the 3-D harmonic balance code with a multi-body capability (to be develop in
the second year of Phase II), three F-16/store LC" cases are selected; each represents one type
of LCO discussed above. These three F-16/stor< configurations and their respective LCO flight
conditions are shown in Fig 6.4.

Five Selected F/A-18/Store LCO Cases

In 1999, ZONA has received a Naﬂ}y SBIR Phase I contract entitled “Adaptive Reconfigurable
Control Based on a Reduced-Order System Identification for Flutter and Aeroservoelastic

- Instability Suppression” (see Section 6.1, ZONA’s Related Work). As one of the team members,

the Boeing company, St. Louis, supplied ZONA with all the necessary data of the F/A-18 LCO
configurations including the structural finite element models with various stores, the LCO flight
test data and flight control system for F/A-18 LCO suppression. In general, two types of LCO
frequencies were observed during the F/A-18/store flight tests: (1) Type A: LCO frequency at
5.6 Hz for cases of wing/store with tip missile, (2) Type B: LCO frequency at 8.8 Hz for cases
of wing/store with tip launcher only.
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Case

Store Configuration

LCO Frequency

Flight Condition

Wing Tip: Launcher + Missile
Outboard Pylon: MK-84
Inboard Pylon: None

5.6 Hz

M=0.88-1.0

Wing Tip: Launcher + Missile
Qutboard Pylon: MK-84
Inboard Pylon: MK-84

5.6 Hz

M=0388-1.0

Wing Tip: Launcher + Missile
Outboard Pylon: AGM-88
Inboard Pylon: MK-84

5.6 Hz

M~=~0.88-1.0

Wing Tip: Launcher Only
Outboard Pylon: MK-83
Inboard Pylon: None

8.8 Hz

M>09

TR

.

Wing Tip: Launcher Only

Outboard Pylon: MK-83
Inboard Pylon: MK-83

8.8 Hz

l
|

M=>09

In order to further validate the 3-D harmonic balance code with a multi-body capability, we
selected five F/A-18/store LCO test cases (three for type A and two for type B) whose

configuration and flight conditions are presented in Fig 6.5.

To finish the three F-16/store cases and five F/A-18/store cases within a two-year project seems
to be a very ambitious plan. However, this is not the case if the POD/ROM methodology is
employed. Since it is known that the underwing stores generally has little aerodynamic influence
on the aeroelastic characteristics, i.e., only the inertial effects of the underwing stores impact the
aeroelastic characteristics, aeroelastic analysis of wing/store configurations can exclude the
underwing stores in the aerodynamic modeling but, of course, include their inertial effects in the
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structural modeling. Based on this assumption, the three F-16/store and five F/A-18/store cases
become the ideal test cases for the POD/ROM methodology. As already demonstrated in our
Phase I achievements presented in Chapter 4, one can obtain accurate POD/ROM unsteady
aerodynamics using solution snapshots unrelated to the actual structural modes. This suggests
that only four sets of POD/ROM computations are required, two for F-16 with and without tip
missiles and another two for F/A-18 with and without tip missiles, but using simple wing motion
snapshots that are unrelated to the actual F-16 or F/A-18 structural modes. Once these snapshot
solutions are at hand, the unsteady aerodynamics of the three F-16/store and five F/A-18/store
cases can be obtained by using the snapshot ensemble technique described in Chapter 4, but with
respect to their actual structural modes and tip missile/launcher aerodynamic configurations.

Note that excluding the underwing stores from the aerodynamic modeling is based on the
assumption of their little aerodynamic influence on the whole aircraft aeroelastic characteristics.
To verify this, we will conduct a flutter analysis on one of the wing/store configurations but
including all underwing stores in the aerodynamic modeling. The flutter result will be used to
verify the snapshot procedure discussed above. Once verified, this implies that the POD/ROM
methodology can be developed as an highly efficient computational tool for massive flutter and
LCO analyses of aircraft with various underwing stores.

6.3.9 Statement of Work

Tasks to be performed in Phase 11 are defined below. The schedule for the Phase II statement of
work is shown in Section 6.7.10. Timing for related program deliverables, meeting and
presentations are also noted on the schedule.

Task 1: Development of a 2-D Navier-Stokes Solver with Harmonic Balance (NSHB) Code
Take the two-dimensional, nonlinear, harmonic balance aerodynamic code using the Euler
equations which was developed in Phase I and add viscosity, i.e., this becomes a Navier-Stokes
code.

Task 2: Validation of the 2-D NSHB Code for Simple Structures in Transonic Flow

Use the 2-D NSHB code to perform LCO analysis and prediction for simple structural models,
e.g., plunge and pitch of typical sections for conventional and supercritical airfoils in transonic
flow.

— Perform flutter and LCO studies of the NACA 64010A conventional airfoil described in
Chapter 3. Assess the impact of viscosity on transonic flutter dip and LCO by comparing
the results of the 2-D NSHB with those of the inviscid 2-D harmonic balance code
developed in Phase I.

— Perform flutter and LCO studies of the NLR 7301 supercritical airfoil described in
Chapter 5. Correlate the predicted LCO frequency and amplitude with the DLR
experimental results and assess the efficiency of the 2-D NSHB code by comparing its
computer time with that of the time-marching CFL3D computation.

Task 3: Development of the 3-D Euler Solver with the Harmonic Balance (EHB) Code
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Take the 3-D time-linearized aerodynamic code using the Euler equations developed in Phase I
and convert it to a fully nonlinear dynamics code using the harmonic balance method previously
developed for the 2-D code.

Task 4: Validation of the 3-D EHB Code for Simple Wing Structural Model

Use the 3-D EHB code to perform LCO analysis and prediction for simple wing structural

models. Perform correlation studies with the MAVRIC-I business jet wing.

—  Generate a 3-D mesh for the MAVRIC-I business jet wing.

—  Use the BEM Solver to transfer the mode shapes computed at the structural finite element
grid to the CFD surface mesh of the MAVRIC-I business jet wing.

— Perform LCO analysis at selected transonic Mach numbers and correlate the predicted
frequency-domain pressure distribution with the NASA/Langley TDT measurements. Assess
the accuracy of the predicted LCO frequency and amplitude by the comparison with the TDT
measurements.

Task 5: Development of a 2-D NSHB Code with Multi-Structural Mode Capability

Take the 2-D NSHB code developed in Task 1 and add a multi-structural mode capability. This
will provide the capability for LCO analysis of complex multi-mode, nonlinear structural models
such as an airfoil and control surface with freeplay.

Task 6: Validation of the 2-D NSHB Code for Nonlinear Aerodynamic and Structural
Models

Convert the 2 degrees of freedom NACA 64010A and NLR 7301 airfoils to a 3 degrees of
freedom structure by adding a control surface motion with freeplay. Use the 2-D NSHB code
with multi-structural mode capability to perform LCO studies of the 3 degrees of freedom
NACA 64010A and NLR 7301 airfoils. Establish a test bed for novel and improved harmonic
balarce solution methods to predict LCO with nonlinear aerodynamics and structural models.

»

Task 7: Development of a 3-D Time-Linearized Euler Solver (TLE) Code with a Multi-
Body Capability

Take the 3-D time-linearized aerodynamic code using the Euler equations developed in Phase I
and add a multi-body capability. This will provide the capability to predict the transonic flutter
dip of wing with stores configurations.

Task 8: Validation of the 3-D TLE Code for Multi-Body Configurations

Use the 3-D TLE code with the multi-body capability to perform flutter analysis of the three F-

16/store and five F/A-18/store cases. Correlate the predicted flutter boundaries with the flutter

flight test data.

— Generate the multi-block mesh systems of the F-16/store and F/A-18/store configurations
with/without the tip missile.
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—  Use the POD/ROM methodology to obtain the snapshot solutions of the F-16/store and F/A-
18/store configurations with simple wing motions that are unrelated to the actual structural
modes.

— Transfer the structural mode shapes of the three F-16/store and five F/A-18/store cases from
the structural finite element grid to the CFD surface grid using the BEM solver.

— Compute the unsteady aerodynamics of these F-16/store and F/A-18/store cases with respect
to their actual structural modes using the snapshot ensemble technique.

— Perform flutter analysis of the three F-16/store and five F/A-18/store cases. Correlate the
predicted flutter boundaries with the flutter flight test data.

Task 9: Development of a 3-D Harmonic Balance Code with Multi-Body Capability

Take the 3-D TLE code developed in Task 7 and add the harmonic balance method. This will
provide the capability of LCO analysis for multi-body geometry like the wing/store
configurations.

Task 10: Development of a Rayleigh Quotient Technique for LCO Prediction of High
Degree-of-Freedom Nonlinear System

Apply Rayleigh Quotient technique to the codes developed in Tasks 2, 3, or 9 to demonstrate

 feasibility of computing LCO with high degree of freedom nonlinear system. This will give a

description of the LCO behavior of a very high dimensional system, i.e., a nonlinear CFD model
coupled with a nonlinear structural model.

Task 11: Validation of the 3-D Harmonic Balance Code for the Multi-Body Configurations
Use the 3-D harmonic balance code with the multi-body capability developed in Task 9 to
perform LCO analysis and prediction of the three F-16/store and five F/A-18/store cases. '

Correlate the predicted LCO frequenc1es and amplitudes of these cases with their respective
flight test data
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6.3.10 Planned Program Schedule

Tasks

Yr 1 Quarter

Yr 2 Quarter

314

11234

Performed by

9.

10.

11.

12.

Kick-Off Meeting
Final Oral Presentation

12
Development of a 2-D Navier-Stokes Solver with a

Harmonic Balance (NSHB) Code
Validation of the 2-D NSHB Code for Simple
Structures in Transonic Flow

— Perform flutter and LCO studies of the NACA ™|~

64010A conventional airfoil

— Perform flutter and LCO studies of the NLR
7301 supercritical airfoil

Development of the 3-D Euler Solver with the

Harmonic Balance (EHB) Code

Validation of the 3-D EHB Code for Simple Wing

Structural Model

— Generate a 3-D mesh for the MAVRIC- -

business jet wing

— Use the BEM Solver to transfer the mode shapes
from the structural grid to the CFD surface grid

— Perform LCO analysis at transonic Mach
numbers of the MAVRIC-I business jet wing

Development of a 2-D NSHB Code with Multi-
Structural Mode Capability

Validation of the 2-D NSHB Code for Nonlinear
Aerodynamic and Structural Models

Development of a 3-D Time-Linearized Euler
Solver (TLE) Code with a Multi-Body Capability
Validation of the 3-D TLE Code for Multi-Body

Configurations

~ Generate the multi-block mesh systems of the F
16/store and F/A-18/store configurations

— Use the POD/ROM mniethodology to obtain the
snapshot solutions

— Transfer the structural mode shapes from the
structural finite element gri? to the CFD surface
grid using the BEM solver

~ Compute the unsteady aerodynamics of these F-
16/store and F/A-18/store cases using the
snapshot ensemble technique

~ Perform flutter analysis of the three F-16/store
and five F/A-18/store cases

Development of a 3-D Harmonic Balance Code
with Multi-Body Capability

Development of a Rayleigh Quotient Technique for
LCO Prediction of High Degree-of-Freedom
Nonlinear System

Validation of the 3-D Harmonic Balance Code for
the Multi-Body Configurations

Documentation

— Interim Report

-~ Final Report-

A

Duke

Duke
ZONA/Duke

Duke

ZONA

ZONA

ZONA

Duke

Duke/ZONA

Duke

ZONA
Duke

ZONA

Duke/ZONA

ZONA

Duke

Duke

ZONA/Duke

ZONA/Duke
ZONA/Duke
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6.3.11 Deliverables

The deliverables and delivery cycle of Phase II are presented in Table 6.1.

Table 6.1 Deliverables of the Proposed Phase II Project

Deliverable Delivery Cycle
Interim Reports Quarterly
Funds & Man Hour Expenditure Reports Quarterly
Final Report As Required
Executable Code of the Final Program As Required
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CHAPTER 7

COMMERCIALIZATION STRATEGY

With a strong technical background, ZONA also has extensive experience in commercialization
of its product. In fact, ZONA has been serving the aerospace community through
consulting/contractual work and software licensing support since 1986.

e ZONA’s unsteady/steady aerodynamic software in the aerospace market most notably
includes ZONAS! (currently the Aero Option II in MSC/NASTRAN - an industry standard)
and the ZAERO software system (covering the entire Mach range). ZONA codes have, thus
far, accumulated over 120 users worldwide.

e Under an AF/STTR Phase II contract, ZONA and MSC Software are reaching a business
agreement to commercialize and jointly market ASTROS* (the seamlessly integrated
ZAERO module into ASTROS). ASTROS is a popular Automated STRuctural Optimization
System software among aerospace industry and universities.

7.1 Next Generation Aeroelastic Software

After some 20 years of continuing R&D effort in unsteady transonic aerodynamics, high-level
(3-D Euler and Navier-Stokes) unsteady CFD methods remain inadequate to handle the fixed-
wing transonic aeroelastic problems encountered in industry. ZONA’s recent marketing survey
reveals the possible causes of such an inadequacy. These include that: (1) the current CFD
methods is computationally very expensive for flutter calculations, (2) the procedures are not
easily user-adaptive, (3) Structure engineers prefer to work with solutions in frequency-domain
not time-domain. Industry standard methods such as the classical AIC method is lacking in the
transonic regime where a reliable high-level CFD method such as CFL3D is badly needed. The
proposed frequency-domain POD/ROM method originated by Hall/Dowell has a great potential
to be such transonic AIC-like method which has the essence of efficiency, accuracy, modularity
and could assess the key physics for nonlinear flutter/LCO. Its future applicability is far
reaching which extends to areas in aeroelasticity, aeroacoustics, turbomachinery, ASE, MDO,
etc. On the other hand, the ZAERO aeroelastic system exclusively adopts the AIC methodology
as basis for the unified unsteady aerodynamics. Although efficient, ZAERO is incapable to
provide nonlinear, viscous unsteady aerodynamics with large amplitude oscillations. Once
developed, the transonic frequency-domain POD/ROM/HB (Harmonic Balance) methodology
along with its Navier-Stokes option, would be an integral part of ZONA’s ZAERO aeroelastic
system. ZONA envisions that the production code of the frequency-domain POD/ROM/HB
method should become the future industry standard for routine transonic flutter/LCO analysis.

7.2  ZONA Funded Phase III for Commercialization
Stated in Section 7.0, ZONA will fund Duke University for further R&D necessary to attain a

production of aeroelastic software for commercialization. To do so, ZONA will utilize its
current annual license income fund from MSC/ZONAS51 and ZAERO to support the Phase III
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R&D activity. Industry B-sites will be set up with Boeing/St. Louis and Lockheed Martin/F orth
Worth to upgrade the code as a viable industry production software.

7.3 Commercialization of the Software with ZAERO

When the frequency-domain POD/ROM/HB code is successfully developed, ZONA will
package the POD/ROM/HB/Navier-Stokes methodology (with either software option) into a
well-defined commercial software product. To facilitate its sales, ZONA plans to couple the
code with the unified aerodynamic module within ZAERO and jointly market for both codes.

ZONA has currently teamed up with a major FEM software house (MSC Software) for ZONAS!
(in MSC/NASTRAN) and ZAERO licensing. ZONA currently supports over 120 users
worldwide for the MSC/NASTRAN Aero Option II. Released in April 1999, ZAERO has
already had a dozen users including Lockheed Martin/Vought Systems, Boeing/Commercial,
DLR/Géttingen, SDRC, NASA/MSFC, NASA/Dryden, Scaled Composites Coleman Aerospace,
etc. With ZONA’s extensive aerospace contractual/software licensing experience, this software
product is expected to break into the aerospace market quite readily. Prospective customers
include ZONA’s current clientele, other aerospace companies and DoD organization.

Other commercialization steps include advertising through magazines, the internet, and attending
AIAA conventions. All these are currently being pursued by ZONA for the licensing sales of
ZAERO.
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CHAPTER 8

CONCLUSIONS

Phase I of our STTR effort has concluded successfully with a number of achievements attained
and a clear plan developed for Phase II and III to follow upon these accomplishments. The
challenge at the start of Phase I was to assess the viability of current time marching CFD codes
for transonic flutter and limit cycle oscillation (LCO) analysis and design and also to develop
compntationally more efficient and physically accurate descriptions of aeroelastic systems
including the representation of the unsteady aerodynamic forces. This has been done.

Consistent with the experience and observations of other researchers and practioners, we have
found that time marching CFD codes of the conventional sort are simply too computationally
intensive to be viable for aeroelastic modeling in an industrial application. (See the discussion in
Chapter 5.) Moreover if such codes were to be used for the development of actively controlled
smart structures, their cost would be prohibitive. Our studies were conducted with a state-of-the-
art CFD code, CFL3D, made available to us by the Aeroelasticity Branch of the NASA Langley
Research Center. We are most appreciative of their help in making this evaluation.

Much of our effort in Phase I has therefore been devoted to the development of alternative
methods using the concept of aerodynamic modes, either eigenmodes of the flow field or the
modes one can construct using the method of proper orthogonal decompostion (POD). Using a
few of the most dominant modes, Reduced Order Models (ROM) can be obtained that are orders
of magnitude smaller in terms of the number of degrees of freedom and computational time
compare to the original CFD model. Such models are simply called POD/ROM. 1t is
emphasized that these models retain the essential physical modeling from the CFD code from
which they are obtained, e.g. Euler or Navier-Stokes equations.

A coripanion development has been the study of large shock motions using the method of
harm~nic balance (HB)to represent the dynamically nonlinear shock wave motion and
aerodynamic forces due to airfoil (or wing) motion. As part of the planned work for Phase II/111
we plan to combine the best features of the POD/ROM and HB methods.

Using POD/ROM and HB several studies were undertaken in Phase I to illustrate the
computational efficiency and physical modeling capability of this new approach. These include

e Transonic Limit Cycle Oscillation Analysis of an Airfoil with Control Surface Freeplay
(Chapter 2)

Here the POD/ROM aerodynamic forces are combined with a nonlinear structural model to
investigate LCO due to freeplay.

o Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter and Limit Cycle
Oscillations (Chapter 3)
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Here the harmonic balance (HB) approach is used to model the aerodynamic flow with large
shock wave motions. An LCO study for an airfoil oscillating in pitch where the nonlinearity
is entirely due to large shock motion has been completed.

e Three Dimensional Transonic Aeroelasticity Using Proper Orthogonal Decomposition Based
Reduced Order Models (Chapter 4)

For small shock motions, the POD/ROM methodology has been extended to three
dimensional flows over wings and a transonic flutter analysis has been completed.

Future plans are described in more detail in Chapter 6 and will include the addition of viscosity
in both the two-dimensional and three-dimensional flow POD/ROM with the HB method to be
further developed to account for large (as well as small) shock motions and also for viscous
nonlinearities. A systematic plan and roadmap has been constructed for this work and a

commercializtion strategy developed as well (Chapter 7).
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TRANSONIC LIMIT CYCLE OSCILLATION ANALYSIS
USING REDUCED ORDER MODAL AERODYNAMIC MODELS

Earl H. Dowell, * Jeffrey P. Thomas, ! and Kenneth C. Hall !
Duke University
Durham, NC 27708-0300

INTRODUCTION

The principal focus of this paper is on the transonic aeroe-
lastic behavior of an airfoil with control surface freeplay in-
cluding flutter and limit cycle oscillations. In most of this
work, we will assume the shock motion is sufficiently small
such that it is (linearly) proportional to the airfoil motion, e.g.
airfoil motions are less than the equivalent of one degree in
angle of attack.

Using an Euler/CFD-based reduced order aerodynamic
model, a thorough study of the flutter boundary with Mach
number (M) is first presented in the absence of freeplay. Par-
ticularly noteworthy are the rapid changes of flutter modal
content in the transonic range. This is attributed in part to
the rapid changes of center of pressure location as the mean
shock position changes with Mach number. These changes in
the modal response content are also found in the limit cycle os-
cillations (LCO) which are encountered when control surface
freeplay is present. Indecd for LCO, the modal content may
change at a fixed Mach number when the dynamic pressure or
flow density is varied.

Below M=0.80, the LCO and flutter oscillations are qual-
itatively similar to those found at low Mach number where
carlier analyses and experiments have been carried out. How-
ever, the response behavior in the transonic flow regime is no-
tably different. Of special interest is the occurrence of flutter
in a narrow range of Mach number for pitch and flap (control
surface) dominated motions. Moreover, beyond a certain high
transonic Mach number (after the mean shock position reaches
the trailing edge of the airfoil), neither flutter nor limit cycle
oscillation occurs.

SIGNIFICANCE OF LCO

LCO is known to occur on various operational aerospace
flight vehicles. This has been a source of serious concern since
there arce no analysis techniques available that have predicted
LCO in an operational aircraft. There have been some semi-
empirical techniques developed to correlate with LCO that
have been observed in flight, and these are useful for under-
standing the LCO that has occurred. See Reference [1]. How-
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ever these techniques are not as satisfactory for the design of a
new vehicle or the substantial modification of an existing one,
e.g. new stores to be carried by an aircraft.

In wind tunnel tests of flight vehicle prototypes, LCO has
been notably absent for the most part. This is perhaps not al-
together surprising since wind tunnel scale models have been
designed based upon linear aeroelastic concepts. Such wind
tunnel models and tests have been used successfully for many
years to predict flutter (the onset of a dynamic linear instabil-
ity). However they are inherently unable to predict a nonlinear
phenomenon such as LCO.

In this regard, it should be noted that LCO may be benefi-
cial as well as detrimental. Without the nonlinearities that lead
to LCO, the onset of flutter may lead to catastrophic failure of
the structure. Hence if we can understand and predict LCO,
perhaps we can take advantage of these nonlinearities to shape
more favorable responses of the aircraft leading to enhanced
safety and performance.

TECHNICAL DISCUSSION
Sources of Nonlinearities
The principal sources of the nonlinearities essential to the
LCO are a subject of current debate among the experts in the
field. The candidate sources are several:

Fluid
e Shock motions
o Separated flow motions

Structure
e Free-play
e Geometric, e.g. a nonlinear relationship between
strain and displacement
e Material, e.g dry friction damping

Also there is a further distinction between a static versus a dy-
namic nonlinearity. An important example of this is the role
of a shock wave in the fluid. If a shock is present, then its
creation is the result of a dynamic nonlinear process. However
once a steady flow is established, and if the airfoil motion is
sufficiently small, then the shock motion will also be small and
proportional to the airfoil motion. Hence in this situation, the
shock itself represents a nonlinear static (time independent)
equilibrium and the motion may be treated as a dynamically
linear perturbation about the mean shock position. In most
of the following discussion, we assume a dynamically linear
model of the shock motion, but also include a structural (dy-
namic) nonlinearity, i.e. freeplay in the connection of the con-
trol surface to the airfoil.



Figure 1: Airfoil with Control Surface Configuration
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Airfoil with Control Surface Freeplay Model

A sketch of the configuration is shown in Figure (1). It
is a conventional typical section model except that the spring
that attaches the control surface to the airfoil has a nonlinear
freeplay. The elastic restoring torque or moment provided by
this spring is shown in Figure (2) as a function of control sur-
face or flap rotation angle, 3. The freeplay angle is §. Note
that when 8 is less than 4, there is zero restoring torque, while
for B greater than 4, the spring stiffness is the nominal value
in the absence of freeplay. The freeplay may be thought of
as creating a stiffness or (uncoupled) natural frequency of the
spring that varies as a function of flap amplitude. This in-
terpretation is shown in Figure (3). Here the flap uncoupled
natural frequency normalized by the nominal value in the ab-
sence of freeplay is shown as a function of flap amplitude, 3,
normalized by the freeplay angle, §. Note that given a certain
flap amplitude, there is a corresponding “equivalent” flap fre-
quency. Of course for a linear system the control surface or
flap frequency would have a fixed value independent of flap
amplitude.
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Thus conceptually and computationally one may proceed
as follows. First, one determines the neutrally stable motions
of the system in the absence of freeplay for various flap fre-
quencies from zero to the nominal value. Then one determines
the corresponding neutrally stable nonlinear limit cycle mo-
tion, namely the flap amplitude, from Figure (3). More details
of this procedure will be given later including the construc-
tion of the linear instability or flutter boundary for this system,
which serves as a basis for determining the limit cycle oscilla-
tions. '

This approach has been used successfully at low Mach
number and the theoretical results correlated with experi-
ments. See References [2] and [3]. To extend these earlier
calculations to transonic flow requires a substantially more
sophisticated, but still compute*.onally efficient aerodynamic
model. Fortunately one is available as is described next.

Computational Fluid Dynamic (CFD) Modeling and
its Modal Decomposition

A typical CFD model is very large in terms of the num-
ber of equations required to be solved. And this makes such
models problematical for aeroelastic (and some other) analy-
ses. For example, the CFD mode! used in the present work is
based upon the Euler equations of fluid mechanics and has a
spatial grid of 65 X 97 (6035) mesh points. At each grid point
there are four fluid variables to be determined. Thus the CFD
model per se has about 25,000 unknowns to be determined by
solving 25,000 equations. This is a doable task if the struc-
tural motion is known. However if this CFD model is to be
combined with a set of structural equations of motion, and so-
lutions are to be found for many combination of structural and
fluid parameters, then the calculation using the original CFD
model quickly gets out of hand. Thus the search for an alter-
native approach.
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Several semi-empirical methods have been derived to ad-
dress the computational feasibility issue. These as well as the
method to be described and used here are discussed in more
depth in Reference [4]. Among these methods are variations
on the notion of a Padé approximant.

The method used here is based upon the observation that
virtually all CFD models can be thought of as having a modal
composition. The simplest conceptuai set of modes is perhaps
the fluid or aerodynamic eigenmodes of the CFD model, and
these modes have been used successfully in creating reduced
order models (ROM) that are computationally and conceptu-
ally attractive. See the discussion in Reference [4] and the
forthcoming Reference [5].

However it turns out that determining the aerodynamic
eigenmodes of a large CFD model is itself a challenging
task. Hence a method called Proper Orthogonal Decompo-
sition (POD) is employed here and in Reference [4]. The first
use of this method in an Euler based aerodynamic context was
by Romanowski. Again see the discussion of the literature in
Reference [4]. In this method, by using a time history or fre-
quency response of the CFD model to a known structural in-
put, one may construct a small set of modes or basis functions,
typically less than 100. Using these modes, one can reconsti-
tute and very substantially reduce the size of the CFD model
with essentially no loss in accuracy or physical content. This
is the approach used here.

For the present analysis, 63 POD modes are found from the
frequency responses (aerodynamic transfer functions) in flap,
pitch and plunge respectively at 21 frequencies at each Mach
studied using the original CFD model. Based upon previous
experience, one might use an even smaller number of aero-
dynamic modes than this. However, even with this generous
number of modes, the computations described below were all
done in a few days.

The computational grid used for the CFD model is shown
in Figure (4), and Figure (5) shows the chordwise steady flow
pressure distributions for several Mach numbers. Note the
presence of the shock at M=0.80, 0.85, and 0.90.

Linear Instability (Flutter)
First, consider the flutter behavior for this system in the
absence of freeplay. The stability of this system was assessed
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Structural Parameters

Half Chord b = 0127m
Sectional Mass* m = 1.567kg/m
Air Density poo = 1.225kg/m®
Pitch Axis Location (e/b) a = =05

Flap Hinge Location (eg/b) agp = 05

Mass Ratio, (m/peomb) g = 2524

Static Unbalance, (S, /mb) o, = 04316
Radius of Gyration, (I /mb?) r2 = 0.5331

Flap Static Unbalance, (Sg/mb) zg = 0.01985

Flap Radius of Gyration, (Ig/mb%) rj = 0.01292-

Uncoupled Frequencies

wy = 4.359Hz
we = 6.04Hz
wg = 12.54Hz

Coupled Frequencies

wp = 445Hz
we, = 921Hz
wg = 19.44Hz

*Plunge inertia corrected for experimental support mass
M/m = 2.166

Table 1: Structural Parameters for NACA 0012 Airfoll with Con-
trol Surface

by constructing a root locus (migration of the true aeroelastic
eigenvalues) as a function of the nondimensional airspeed or
dynamic pressure for each Mach number. The usual structural
and flow parameters are defined in Table 1. These are typi-
cal and correspond to the theoretical and experimental model
studies in References [1] and [2].

A representative root locus result is shown in Figure (6) for
M=0.80. Root locus results are available for all Mach num-
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bers used to construct the flutter boundary which is shown in
Figure (7). Consider first Figure (6). The eigenvalues in this
root locus are those of the coupled fluid/structural (aeroelastic)
system. However the roots that originate as structural modes
~ at low values of velocity or dynamic pressure are readily iden-

tified and labeled in the figure. The vertical axis is the imag-
inary part of the eigenvalue or frequency, and the horizontal
axis displays the real part or rate of growth (if positive) or de-
cay (if negative) of the oscillations associated with each root
or eigenvalue.

Note especially that the “plunge” aeroelastic mode has a
root that for low “gain” (or flow velocity or dynamic pres-
sure) muves to the left and becomes more stable. But then
as the flow velocity increases, it reverses direction and moves
into me right half plane becoming unstable. And then at even
higher velocities, it moves back into the left hand plane and
becomes stable again. However by then, the pitch mode has
moved into the right half plane and become unstable. Hence
the aeroelastic system remains unstable once the plunge mode
becomes again stable at this velocity and Mach number.

All the other roots in this figure which appear to originate
from near the origin are essentially acrodynamic roots, and
these roots all move off into the left half plane indicating they
are always stable and increasingly so as the dynamic pressure
increases. On occasion an aerodynamic root may become un-
stable however, though not for the parameters studied in this
work.

As the Mach number becomes higher, the most critical root
may change. For example, at M=0.85 the pitch root becomes
unstable first, and for M=0.90, it is the flap root. At yet higher
Mach numbers, no roots become unstable. For brevity these
other root loci are omitted here.

Taking all of this information from the root loci at various
Mach numbers, the flutter boundary trend with Mach num-
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ber can be determined, and is presented in Figure (7a). There
are several interesting features to this flutter boundary. Up to
M=0.80, the root-loci are rather similar, and it is always the
plunge root that is critical for flutter. Starting at M=0.80, the
pitch root also shows instability, and at M=0.825 and 0.85, it
is most critica! for flutter. At M=0.875 and 0.90, the flap mode
is most critical for flutter, and for M=0.925 to at least M=1.1,
no flutter is observed for a non-dimensional flow velocity up
to at least one. The corresponding frequencies of the flutter
oscillations are shown in Figure (7b). Note that in Figure (7)
when two data points are shown for say the plunge root at a
fixed Mach number, the lower velocity point is when flutter
begins, and the higher velocity point is when the root returns
to the stable left half plane and flutter ceases in that root.
Note also the narrow range of Mach number where the
change in flutter mode occurs. Results of this type have been
observed in experiments where they are called "chimneys”.




See Reference [6].

Limit Cycle Oscillations

Now the freeplay is added to the model and thus LCO may
occur. As is perhaps obvious from physical intuition, when
freeplay is added, the stiffness of the control surface freeplay
is reduced for small motions. Hence one expects limit cycle
oscillations to occur below the flutter boundary, i.e. at flow
velocities less than those shown in Figure (7a). Indeed a few
moments of reflection may lead one to expect that once the
linear flutter boundary shown in Figure (7a) is exceeded, then
exponentially explosive flutter will occur when the nonlinear-
ity is due to freeplay. That is found to be the case as shown by
the present analysis and also by the aralysis and experiments
of References [2] and [3].

To compute the LCO one proceeds as follows. For all other
parameters fixed including Mach number, the flutter veloc-
ity is determined from a linear flutter analysis as a function
of (uncoupled) flap natural frequency (or equivalently spring
stiffness). Since the flap frequency (or stiffness) is known
as a function of flap amplitude, see Figure (3 (or (2)), we
immediately can determine from these two results (by cross-
plotting), the flap amplitude for neutrally stable nonlinear mo-
tions (LCO) as a function of flow velocity. As an example
for M=0.80, see Figure (8). In Figure (8a), the “flutter” or
fiow velocity at which neutrally stable oscillations may occur
is shown as a function of flap frequency. Using Figure (3),
which shows the nonlinear dependence of flap frequency as
a function of flap amplitude, Figure (8b) may be constructed.
This shows LCO amplitude as a function of flow velocity. The
corresponding “flutter” frequency and the LCO frequency are
shown in Figures (8¢) and (8d) respectively.

A comment on this method is appropriate here. The reader
familiar with the harmonic balance approach will recognize
that a single harmonic approximation has been used to de-
scribe the freeplay nonlinearity. This approach is more fully
described in the present context in Reference [3]. Of course
this is a classical procedure for nonlinear systems; though it is
not often used for systems with as many regrees of freedom as
the present one. The results of Refer-nce [3] confirm that the
harmonic balance approach gives results in good agreement
with those obtained from time marching solutions that include
all harmonics, as well as the results from experiments.

The results of Figure (8) have several interesting features.
First of all, the limit cycle amplitude is normalized by the
freeplay angle, &. The theory predicts and experiments agree,
see Reference [3], that when the results are normalized in this
manner, they are universal. That is, the limit cycle amplitude
is proportional to the freeplay angle. Secondly, the lowest ve-
Jocity at which LCO may occur corresponds to the minimum
flutter velocity that occurs at a certain flap frequency. See
Figure (8a) and then compare the lowest velocity for LCO in
Figure (8b). Strictly speaking, a finite disturbance is required
to generate LCO at this lowest velocity and for a small ve-
locity range thereafter. LCO’s for any disturbance, no matter
how small, will only occur when the flutter velocity for a flap
frequency of zero is exceeded. Again compare Figures (8a)
and (8b). The unstable LCO’s, which are shown along with
the stable LCO’s (those that are observed in an experiment),
provide a measure of the level of disturbance required to ini-

tiate the LCO at the lower flow velocities. In practice such
disturbances are usually present in wind tunnel experiments
and flight operations. »

The results of Figure (8) are typical until one reaches the
higher transonic Mach numbers where linear theory predicts
flutter will cease. At the highest Mach number considered here
where flutter and LCO may occur, M=0.90, the LCO has a
somewhat different character. See Figure (9). Again the LCO
is first encountered at the minimum velocity at which flutter
will occur over the range of flap frequencies. But now the cor-
responding flap frequency is zero. See Figure (9a). Moreover,
when the flow velocity increases to higher values, there are
two stable limit cycles. The nature of the disturbances to the
systemn would determine which of these two LCO would be
observed in a wind tunnel experiment or in flight. Note that
the LCO branch with the larger amplitude will again move to
amplitudes with very large values (to infinity according to the
present theoretical model) when the flow velocity approaches
the linear flutter velocity.

CONCLUSIONS

The transonic flutter and limit cycle oscillations of an air-
foil with control surface freeplay have been determined using
a new aerodynamic modeling technique that provides greater
physical insight and understanding by tracing the true root lo-
cus of the corresponding linear aeroelastic system. This in
turn enables a very computationally efficient harmonic bal-
ance technique to be used in determining the nonlinear limit
cycle oscillations.

New physical insights gained include the rapid change in
flutter mode that occurs in the transonic Mach number range.
This phenomenon has been observed in experiments, but has
not been previously predicted theoretically. With respect to
LCO, these are the first results available in the transonic range
for the configuration studied. The model also predicts signifi-
cant changes in LCO behavior as a function of Mach number.
However, these are as yet unconfirmed by experiments. Up to
high subsonic Mach numbers, the flutter and LCO results are
similar to those previously found at low Mach numbers.

CURRENT WORK

Current work is directed toward addressing LCO arising
from large amplitude shock motions (and even in the absence
of any structural nonlinearity such as freeplay). Preliminary
results have now been obtained, and we have determined LCO
triggered by a single degree of freedom flutter in pitch in the
transonic range. For the particular configuration studied, flut-
ter may occur below the linear flutter velocity if the distur-
bance is sufficiently large, say on the order of 3 degrees of
pitch. These results are described in a separate abstract that is
being submitted for presentation at the SDM Conference.
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INTRODUCTION

Limit cycle oscillations (LCO) in aeroelastic systems ap-
pear to be more prevalent in transonic flow than in subsonic
flow. Hence it has been thought that at least for some configu-
rations the source of the nonlinearity that leads to LCO isin the
aerodynamic flow. Of course nonlinear structural mechanisms
can also lead to LCO whether the flow is transonic or not. And
there have been wind tunnel experiments where the test model
was designed to exhibit LCO due to a structural nonlinearity,
and such test results have been successfully correlated with
analysis. See References [1] and (2]. However, the present
understanding of LCO induced by aerodynamic nonlinearities
is less complete and as yet no systematic quantitative correla-
tion between theory and experiment has been achieved.

This is perhaps a meaningful measure of the greater dif-
ficulty in modeling aerodynamic nonlinearities, both theoreti-
cally and experimentally, compared to modeling nonlinearities
. 1n a structure. )

One of the advantages of studying theoretical models is
that each of the several possible physical phenomena that may
lead to LCO can be studied separately. In this paper, we con-
sider the effects of nonlinearities arising from inviscid tran-
sonic aerodynamics. The principal physical effect of interest
is the relatively large motion of the shock wave as the am-
plitude of say the pitch motion of the airfoil becomes suffi-
ciently large. This in turn leads to « movement of the center
of pressure with amplitude. Hence cr.c expects to see an effect
of amplitude on the neutrally stable motions that may occur.
Moreover this may lead to limit cycle motions rather than the
catastrophic exponentially growing oscillations predicted by
time linearized models. The latter models capture the effect
of the mean position 6f the shock and small shock motions
about this mean position by assuming the shock motion is dy-
namically linear, i.e. the shock motion is proportional to the
airfoil motion. This is not true for dynamically nonlinear aero-
dynamic models that allow for larger and more general shock
motions including the possible appearance and disappearance
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of a shock during a cycle of airfoil motion. The latter is our
concern here.

TECHNICAL DISCUSSION

In this paper, we will consider two distinct aeroelastic phe-
nomena, divergence and flutter, and their associated limit cy-
cle oscillations. To keep the discussion focussed on the fun-
damental physical phenomena, and to ease the interpretation
of the inherently complex phenomena, only a single structural
degree of freedom will be studied. However the aerodynamic
modei will be a state-of-the-art computational fluid dynamics
(CFD) based upon the Euler equations of nonlinear, rotational
inviscid aerodynamic theory. The aerodynamic model and its
spatial discretization will be discussed in the full paper.

Here we emphasize that the solution technique is for a
large system of ordinary differential equations in time, which
represents the time variation of the fluid unknowns at each spa-
tial grid point in the CFD model. The unknowns are four in
number at each grid point for a two-dimensional Euler flow
and, for example, could be density, the two scalar components
of momentum, and the total energy at each grid point. The
present CFD model has about 17,000 total flow variable un-
knowns, and therefore an efficient solution method is impera-
tive to carry out the studies reported here.

Harmonic Balance Solution in the Frequency
Domain

The pioneering work of Ueda and Dowell [3] and Lan and
his colleagues [4] should be recalled. Ueda and Dowell used a
describing function technique whereby the dominant harmonic
was extracted from a time marching CFD model, LTRAN2,
using both indicial and harmonic motions of the airfoil. They
considered a two degree of freedom typical airfoil section. Lan
et. al. used the method of harmonic balance to study the un-
steady transonic aerodynamics for flutter and limit cycle oscil-
lation prediction. In their work, they used the transonic small
disturbance potential flow model, as did Ueda and Dowell, and
only considered a single harmonic. In the present work, we
employ the Euler equations of fluid dynamics and also retain
multiple harmonics in the acrodynamic model. It is found that
using several harmonics improves the theoretical prediction of
the aerodynamic forces. However in the aeroelastic analysis,
when the fluid and structural models are coupled, only a single
harmonic is used. The effects of higher harmonics on this sin-
gle harmonic are retained as they are found to be significant in
the fluid model.




S

> /v

K ? >

(%

s T

S
Ko SN
< = S
W ;‘*\ Y

b %

8

.\ﬁ\ s

N

(b) Overall

(a) Close-up
Figure 1: NACA 64A010A Computational Grid

The Aeroelastic System and Its Solution

The structural equation of motion is a simple single degree
of freedom model in pitch. See Figure (1) for a depiction of
the airfoil and the CFD grid used in the numerical calcula-
tions. By carefully selecting the pitch axis and mass ratio, we
can insure that the system will either undergo classical linear
acroelastic divergence or flutter. Divergence can occur when
the aerodynamic "negative” stiffness overcomes the structural
stiffness, while flutter may occur when the aerodynamic neg-
ative damping overcomes the structural damping. As will be
shown, each of these classical linear aeroelastic phenomena
has a distinctively different limit cycle or nonlinear behavior.

The Mach number for these studies is M=0.80 anda NACA
64A010A airfoil is considered. The NACA 64A010A is
a symmetric (10.6% thickness ratio) variant of the ”Ames”
AGARD 156 benchmark section. The elastic axis is consid-
ered at the mid-chord. Employed for the CFD calculations
is an “O”-type computational mesh with 65 x 65 radial and
circumferential nodes that has an outer boundary radius of 10
chord lengths. The computed static pressure distribution for an
angle of attack of 0.0 and 5.0 degrees is shown in Figure (2).
Note that at 5.0 degrees, the upper surface shock wave has
moved rearward and increased in strength, and on the lower
surface, the shock has essentially disappeared. The center of
pressure (zcp) as a function of static angle of attack is shown
Figure (3) where it is seen the center of pressure moves from
32% chord to 40% chord as the angle of attack varies from 0.0
to 5.0 degrees.

Linear and Nonlinear Divergence

This is perhaps the simpler of the two phenomena since
by definition it is time independent, i.e. we are dealing with
a static linear instability and its nonlinear counterpart. In this
case, the structural equation of motion becomes an equation of
static equilibrium. And for the aerodynamic model, we only
need to determine the lift and moment about some appropri-
ate axis as a function of angle of attack. For small angle of
attack, we will recover the classical linear aeroelastic diver-
gence phenomena. But the question is, what are the effects of
the nonlinearity?

The equation of static equilibrium simply equates the aero-
dynamic and elastic restoring moments. Namely,

K, = QwCQCma ()
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Defining a non-dimensional dynamic pressure, A, Equation (1)
may be rewritten as

A=afcma 2

where )\ is given by A = gooc?/Ka, The angle of attack may
have an initial angle, aq, which is prescribed, and also an ad-
ditional angle due to the torsional twist of the elastic spring,
a.

Now for a linear aeroelastic model, the aerodynamic mo-
ment coefficient is simply proportional to the angle of attack.
Thus for no initial angle of attack, the classical linear diver-
gence dynamic pressure is given by Equation (2) where A is
now a fixed number.

To extend this study of divergence into the nonlinear range,
we recognize that now the aerodynamic coefficient is a nonlin-
ear function of angle of attack. For zero initial angle of attack,
we may determine the twist of the torsional spring, and its de-
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pendence on ), by specifying the twist angle in Equation (2)
and then solving for A. This procedure is readily extended to
the case with an initial angle of attack.

Qualitatively one can anticipate the effect of the aerody-
namic nonlinearity by examining the aerodynamic moment
variation with angle of attack. A necessary condition for di-
vergence to occur is that the aerodynamic moment be posi-
tive in the same direction as the twist angle. Moreover, if the
nonlinear aerodynamic model predicts a moment less in mag-
nitude than that predicted by linear aerodynamic theory, the
effect of the nonlinearity will be to stabilize the divergence.
And vice versa if the nonlinear theory predicts an increase in
aerodynamic moment over that given by linear theory., Hence
by examining the slope of the moment vs. angle of attack
curve with increasing angle of attack, we will know whether
the effect of the nonlinearity is favorable or unfavorable.

In the example below, the effect is favorable. That is, once
the divergence dynamic pressure for a small angle of attack
is exceeded (this is the classical linear aeroelastic divergence
dynamic pressure), then the angle of twist of the pitch spring
remains finite and smoothly increases from zero beyond the
divergence dynamic pressure. See Figure (4) where the angle
of twist is plotted vs the non-dimensional dynamic pressure.
Also shown are results with an initial angle of attack. In this
latter case, there is some twist over the full range of dynamic
pressure. Indeed even if the initial angle of attack is only a few
degrees, it would be difficult to detect the classical divergence
dynamic pressure experimentally for this example. For readers
who have studied buckling of systems in the presence of im-
perfections (e.g. beams, plates or shells with initial curvature),
this behavior will be familiar.

In this example, recall the center of pressure moves from
32% chord at low angles of attack to 40% chord at 5.0 degrees
angle of attack. This is the principal reason for the stabiliz-
ing effect of nonlinear aerodynamics on the post-divergence
condition.

Had the change of the slope of the aerodynamic moment
curve been in the opposite direction, then the angle of twist

vs. dynamic pressure curve would have bent the other way.
That is, for dynamic pressures below the classical divergence
dynamic pressure, there would be non-trivial (non-zero) twist
angles that represent possible static nonlinear equilibrium so-
lutions. Intuitively one recognizes that these latter solutions
would themselves be unstable, i.e. such results would be inter-
preted physically as the magnitude of the disturbance required
to generate non-trivial twist at dynamic pressures below the
classical divergence dynamic pressure. In our studies to date,
only the stable nonlinear effect has been observed for stati-
cally divergent systems. However, this is not to say that unsta-
ble nonlinear divergence systems may not be encountered for
some other parameter combinaticns.

Of course, divergence is a very special case of nonlin-
ear aeroelasticity as it is for linear aeroelasticity, because the
frequency of oscillation is zero when divergence and post-
divergence occurs. Thus we now turn to an oscillatory case.

Flutter and Associated LCO

Now consider single-degree-of-freedom flutter in pitch.
Here the classical flutter arises from a negative damping in
the aerodynamic moment beyond a certain reduced frequency.
However the reduced frequency at which the aerodynamic
damping moment becomes negative increases as the angle of
pitch oscillation increases. Hence the reduced velocity de-
creases as the angle of pitch increases, which suggests that
this will lead to an unstable LCO as indeed it does.

In the example considered, we have moved the elastic axis
to 20% chord to preclude divergence and to induce flutter.

It should be emphasized that in the present analysis, we
are using a single harmonic to represent the pitch oscillation.
However in the calculation of the aerodynamic moment, we
include up to three harmonics to determine the effect of higher
harmonics on the first harmonic of the aerodynamic moment.
It turns out that the effect of the third harmonic is negligible.
Indeed, if one only retains a single harmonic in the aerody-
namic analysis, the results are qualitatively correct and have
fair quantitative accuracy.

Results for the first harmonic for the lift and moment about
the pitch or elastic axis are shown in Figure (5). These re-
sults are for two harmonics retuined in the aerodynamic anal-
ysis. Note that the results at a reduced frequency of zero were
those used in the divergence analysis discussed previously. Of
course, a transformation of the pitch axis is used for the diver-
gence analysis.

With the real and imaginary parts of the aerodynamic mo-
ment taken from Figure (5), and using the usual pitch equation
of motion,

©)

where w? = K,/I,, we can convert this equation into the
frequency domain, and nondimensionalize and separate it into
real and imaginary parts. With some rearrangement, these two
equations can be written as

I (6 + 2Cawa b + wla) = gocema
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where a bar over the aerodynamic coefficient and angle of
twist denotes the amplitude of the first harmonic, and Re and
Im denote real and imaginary parts.

The imaginary part of the equation of motion, Equa-
tion (5), essentially determines the neutral stability condition
of the system, and the real part determines the frequency of
oscillation. Of course now both of these results depend on the
pitch amplitude of motion.

While structural damping is readily included in the analy-
sis, as will be seen below, it will be helpful to understand the
essence of the results by first considering the solution for zero
structural damping.

Zerc Structural Damping

In this case, Equation (5) states that a neutrally stable oscil-
lation will occur when the imaginary part of the aerodynamic
moment becomes zero. This will occur at some reduced fre-
quency for a particular angle of pitch oscillation (and other
parameters fixed such as Mach number). Then from Equa-
tion (4), one can solve for the frequency of this neutrally sta-
ble oscillation. For sufficiently small motions, this is the flutter
solution; for larger motions, we determine a limit cycle oscil-
lation. The solution procedure then is to select an amplitude
of oscillation, determine the reduced frequency at which the
imaginary part of the aerodynamic moment is zero from Fig-
ure (5), and then determine the frequency of the oscillation
from Equation (4). Note this is essentially the same computa-
tional procedure as for a classical flutter solution, except now
the reduced frequency, the frequency of oscillation, and the
reduced velocity are all functions of the pitch amplitude.

It should be noted however that just because the imaginary
part of the acrodynamic moment vanishes (i.e. the aerody-
namic damping becomes zero), that alone does not insure that
a neutrally stable oscillation will occur. This is because the
frequency determined from Equation (4) must be physically
possible, i.e the right hand side of Equation (4) must be posi-
tive. It is evident that the right hand side of Equation (4) de-
pends only on the reduced frequency (which is known by the
require nent that the imaginary part of the aerodynamic mo-
me ¢ be zero) and a non-dimensional moment of inertia. But
of ~uurse these reduced frequencies themselves depend on the
pitch amplitude. Thus one can determine when the right hand
side of Equation (4) is positive or negative and express the re-
sult in terms of pitch amplitude and moment of inertia. This
relationship is shown in Figure (6), and the regions where fiut-
ter and limit cycle oscillations are or are not possible are indi-
cated. The value of moment of inertia that marks the boundary
between no flutter or LCO possible and possible flutter or LCO
is termed the “asymptotic value”.

Large Pitch Moment of Inertia

Now if the mass ratio or moment of inertia is much larger
than the asymptotic value, a not uncommon circumstance, then
the flutter or LCO frequency is simply equal to the structural
pitch natural frequency. See Equation (4). With this approx-
imation, the results of Figure (7) are obtained for both zero
and non-zero structural damping. Note that the curves bend to
the left which is indicative of an unstable LCO. That is, these
results are to be interpreted as the amplitude of a disturbance
required to initiate explosive flutter below the classical flutter
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velocity for this single-degree-of-freedom pitch oscillation.

In Figure (8), shown are the values of structural damping
(normalized by pitch moment of inertia) that correspond to
neutrally stable limit cycle oscillations. These can be calcu-
lated from Equation (5) as a function of reduced velocity for
various pitch amplitudes. A cross-plot of these data is used to
construct the plots for non-zero damping values as shown in
Figure (7).
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Effects of Finite Pitch Moment of Inertia

For general values of moment of inertia and structural
damping, the solution algorithm using Equations (4) and (5)
proceeds as follows. First select 2 Mach number and pitch
axis, and for a range of pitch amplitudes, determine the first
harmonic of the aerodynamic moment (including higher har-
monics of the aerodynamic model and their effect on the fun-
damental harmonic). Then for a given pitch amplitude, choose
a reduced frequency and determine the flutter or LCO oscil-
lation frequency from Equation (4). This frequency will be
proportional to the pitch structural frequency, of course. With
the flutter or LCO frequency determined, and the reduced fre-
quency selected, one then knows the flow velocity correspond-
ing to the chosen pitch amplitude. Finally from Equation (5),
determine the structural damping value necessary to give a
neutrally stable flutter or limit cycle oscillation. From this
perspective, the flutter condition 1s simply the neutrally stable
motion that may exist at small angles of twist, and the LCO
are the neutrally stable oscillations that may exist when the
pitch amplitude is finite. Of course the flutter or LCO may
become unstable when it is perturbed (e.g. by perturbations in
the amplitude of oscillation), and this is indeed the case in the
example treated here.

Up to this point, we have assumed that the pitch moment
of inertia is well above its asymptotic value. Hence the flutter
frequency is the same as the structural natural pitch frequency.

Now we consider the more general case and a range of
pitch inertias such that the flutter frequency is no longer
precisely equal to the structural natural frequency in pitch.
Results are shown for non-dimensional pitch inertias of
200,100,50,37.5 and 25 in Figures (9) and (10). These are for
LCO amplitude and frequency, respectively, versus reduced
velocity. The asymptotic pitch inertia results are also shown
for reference.

As expected, for sufficiently large pitch inertia, say greater
than 200, the asymptotic results are good approximations.
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However for pitch inertias less than 100, the results show a
more sensitive dependence on pitch moment of inertia. For
sufficiently small pitch moment of inertia, of course, no flutter
or LCO is possible.

The relationship between pitch moment of inertia and re-
duced velocity may be even more clearly seen by fixing the
pitch amplitude and then plotting these variables as shown in
Figure (11). Note in this figure, as reduced velocity decreases,
the pitch moment of inertia for flutter and LCO to occur tends
to infinity. Thus for sufficiently small reduced velocity no flut-
ter or LCO will occur. Conversely as the pitch moment of iner-
tia decreases, the reduced velocity for flutter or LCO to occur
tends to infinity. Thus below some value of pitch moment of
inertia, no flutter or LCO is possible. Of course, these results
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are for a fixed pitch amplitude when in fact the pitch ampli-
tude is an outcome of the analysis (not an input). However,
the results are not very sensitive to pitch amplitude and the
conclusions regarding asymptotic behavior hold over the full
range of pitch amplitudes considered here.

CONCLUSIONS

Aerodynamic nonlinearities may be give rise to LCO,
“and these may be either stable (favorable) or unsta-
ble(unfavorable). An example of the former is shown here
as the nonlinear counterpart of classical linear aeroelastic di-
vergence. An example of the latter is also shown here as the
nonlinear counterpart of single-degree-of-freedom pitch flut-
ter. Future work will be directed toward the study of the non-
linear counterpart of classical bending/torsion flutter where
similar methods may be used and results for the two-degree-
of-freedom case will be presented in the final paper.
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INTRODUCTION

In the following extended abstract, we demonstrate how
the recently devised proper orthogonal decomposition (POD)
based reduced order modeling (ROM) technique (Refer-
ences [1] and [2]) can be used to model unsteady aerodynamic
and aeroelastic characteristics of three-dimensional transonic
wing configurations. Although transonic Euler flows are
considered in [1] and [2], the initial demonstrations of the
POD/ROM method as presented in these references are for
two-dimensional flow and two structural degree-of-freedom
airfoil configurations. Also in [3], an application of the
POD/ROM technique to the well known vortex lattice method
has been presented.

In extending the POD/ROM technique to three-
dimensions, two primary issues have been of concern.
First, the size of the computational fluid dynamic (CFD)
model will in general be at least an order of magnitude greater
than for two-dimensions. Whereas a typical CFD model for
a realistic two-dimensional configuration might have on the
order of 10's or even 100°s of thousands of degrees of freedom
(DOF), a CFD model for a three-dimensiona! configuration
might easily have on the order of at least hundreds of thou-
sands if not millions or more DOF’s. In two-dimensions, we
have found that very accurate ROM's with on the order of
only a few dozen DOF's can be devised using the POD/ROM
methodology. A first issue to address has thus been whether
or not in three-dimensions one can also generate accurate
ROM'’s, which require at most a few dozen DOF’s.

The second concern is, for any variation of the structural
properties of a given wing under consideration, will a com-
pletely new ensemble of solution vector “snapshots™ have to
be computed in order to devise an accurate POD/ROM. A ba-
sic aspect of the POD/ROM method is that an ensemble of so-
lution vectors is first assembled by computing unsteady CFD
solutions at a number of discrete frequencies within a fre-
quency range of interest for the unsteady structural motions
that are also of interest. In two dimensions, this step is rel-
atively straight forward since one only has to consider a few
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possible motions, e.g. pitch and plunge.

In three-dimensions however, the wing vibratory mod:
shapes will be different for each different structural configu-
ration of a given wing. There can in fact be an infinite num-
ber of unsteady motions (or at least a substantial number of
motions equivalent to the number of DOF’s of the discrete
structural model). Thus the second concern about extending
the POD/ROM to three-dimensions has been whether or not
it is necessary to compute a completely different ensemble of
solution snapshots for every possible structural configuration.
For example, say one computes solution snapshots for a given
wing configuration based on the wing’s particular vibratory
modes shapes in order to develop a POD/ROM to model the
configuration’s aeroelastic characteristics. Then the question
is, if the structural make-up of the wing changes, does one
have to compute a whole new ensemble of solution snapshots
for the same wing, but for the different set of vibratory modes
shapes.

Fortunately in addressing these two issues, and as will
be shown in the following, we have found that accurdte
POD/ROM's with just a few dozen degrees of freedom can
in fact be created for a realistic transonic three-dimensional
configurations. This is true even though in the model prob-
lem to be shown subsequently, the CFD model is easily an
order of magnitude larger than anything we have previously
studied in two-dimensions. Furthermore, we have discovered
that a “fundamental” ensemble of solution snapshots, based on
wing motions that need not be related to the structural moues
under consideration, can be assembled as a first step. Accu-
rate POD/ROM’s for a given wing configuration can then be
created by simply adding to this “fundamental” ensemble, the
snapshots corresponding to actual wing structural modal mo-
tions solely at the frequencies corresponding to the end points
of the frequency range of interest. In general, these two snap-
shots prove to be sufficient to “lock in” the conditions corre-
sponding to the particular structural motion, and indeed the
fundamental ensemble of solution snapshots is sufficient to re-
veal the unsteady dynamics of the fluid dynamic model. The
fundamental ensemble of snapshots can be used again and
again even as the structural mode change, and thus the com-
putational cost of having to compute an entirely new snapshot
ensemble for every new structural configuration is greatly re-
duced.

POD/ROM METHODOLOGY
In the following, we will be considering inviscid three-
dimensional Euler flows. More specifically, linearized (about
some nonlinear background steady flow) unsteady frequency-




domain CFD solutions to the Euler equations are computed.
The POD/ROM procedure can be considered as a “wrapper”
around any typical CFD method, and the CFD method we have
employed for the present analysis is a variant of Ni’s [4] ap-
proach to the standard Lax-Wendroff method. The frequency
domain CFD method in effect represents a linear system for-
mulation of the unsteady fluid dynamic model, i.e.

Aq=-B(¢ 1)

where q is an N dimensional vector (V is the number of mesh
points time the number of dependent flow variables) of the un-
known flow variables a each mesh point in the CFD domain,
and ¢ is the L dimensional vector (L is the number structural
mo-ic shapes) of modal coordinates for the structural model.
A is the N x N fluid dynamic influence matrix, and B is the
N x L matrix which relates the flow solver boundary condi-
tions to each particular mode shape. Both A and B are func-
tions of the background flow and unsteady frequency w. The
structural equations for the wing configuration being modeled
within the flow can be written as

D¢ =-Cq 2

where D represents the L x L structural influence matrix (i.e.
D = —w?M + K where M and K are the generalized mass
and stiffness matrices), and C is the L x M matrix which
represents the discrete integration used to obtain the general-
ized forces associated with each modes shape based on the
unsteady flow q. When Equations (1) and (2) are put together,
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The resulting equation (3) is a fully coupled aeroelastic sys-
tem of equations, which for nontrivial g and (, represents an
eigenvalue problem with w being the eigenvalue. Any eigen-
values with a positive real part imply the aeroelastic system is
unstable.

The problem with constructing and solving this eigenvalue
problem is that A is simply too large for realistic configura-
ticus. As mentioned in the introduction, NV can easily be on
the Lider of 10,000 or 100,000 for two-dimensional configura-

tions, and on order of 100,000 to 1,000,000 or even more for

three dimensional configurations. For such large cases, even
attempting to set up A is well beyond the memory limits of
todays largest computers.

The basic premise of the POD/ROM methodology is that
we assume the unknown flowfield solution vector q can be
expressed as a Ritz type expansion of the form

K
ax Y &¢r KN (4)

k=1

where £ is a generalized coordinate sometimes referred to as
an augmented aerodynamic state variable, and ¢, is the cor-
responding Ritz vector. Equation (4) can also be written in
matrix form as

&

[
g=%¢, where &= ¢|1¢2--~¢K and £= 612 . (5)
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Here, ® is an N x K matrix whose kth column is the shape
vector ¢, and £ is the K dimensional vector of augmented
aerodynamic state variables &.

A reduced-order representation of the fluid dynamic and
aeroelastic systems can be formulated by substituting Equa-
tion (5) into Equation (1) and/or (3) and pre-multiplying by
the Hermitian transpose (27) of ®. i.e.

3TAPE=8"B¢ or Af=-B( (6)

and
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If the Ritz approximation is good one, (K < N), and Equa-
tions (6) and (7) will represent much smaller systems that can
readily be solved using conventional eigenvalue techniques.

The next question becomes what are good choices for the
Ritz vectors ¢, that will in fact result in good Ritz approxi-
mations. Previous studies as detailed in References [1] and [2]
have demonstrated that shape vectors derived via the proper
orthogonal decomposition technique (see for instance [5], [6],
and [7]) are an excellent source. For the sake of brevity, the
of details are omitted here, but a discussion of how the shapes
are derived can be found in References [1] and [2]. The ba-
sic premise behind their formulation is that a number solu-
tion “snapshots” are directly computed for a number of dis-
crete frequencies and unsteady structural motions of interest.
From this ensemble of solution vectors, the POD shapes are
easily derived by solving a small (the size of the number of
snapshots) eigenvalue problem. The first few POD modes de-
scribe the most dominant dynamic characteristics of the fluid
dynamic system, and as such, the POD shapes have proven
to be an excellent set of Ritz vectors for fluid dynamic and/or
aeroelastic models.

MODEL PROBLEM

The configuration under consideration is the AGARD
model 445.6 wing (Reference [8] and [9]). This is a 45 degree
quarter chord swept wing using the NACA 64A004 airfoil sec-
tion that has an aspect ratio of 3.3 (for the full span) and a taper
ratio of 2/3. Figure (1) illustrates the computational mesh em-
ployed for this configuration. The grid is an “0O-O” topology
that employs 49 computational nodes about each airfoil sec-
tion, 33 nodes normal to the wing, and 33 nodes along the
semispan. The outer boundary of the grid extends five semis-
pans from the midchord of the wing root section. The particu-
lar structural configuration of the wing is referred to as the 2.5
ft. weakened model 3 (again see Reference [8] and [9]).

Figure (2) shows the computed wing surface and symme-
try plane steady flow pressure contours for the Mach numbers
of 0.960 and 1.141. A relatively weak shock can be seen
at the trailing edge for M=0.960. This shock appears to get
stronger at M=1.141, The wing section is quite thin (4%),so a
strong shock is not really expected. Comparing contours, our
flowfields look very comparable to those of Lee-Rausch and
Batina [10], although they employed a much larger mesh.

FLUTTER RESULTS
Figure (3) shows the eigenvalue root-loci when sweeping
through various mass ratios (to which there is a correspond-




(a) Wing Surface and Symmetry Plane Grids

N

(b) Outer Boundary Grid

Figure 1: AGRAD 445.6 Wing Grid Topology

ing flutter speed index) when solving the aeroelastic eigen-
value problem posed by the reduced-order aeroelastic model
(Equation (7) for various Mach numbers. Solution snapshots
are computed for the first five given wing mode shapes for re-
duced frequencies (k = wb/Uy) from k = 0.0to k = 0.5 in
Ak = 0.1 increments. This configuration flutters for frequen-
cies less than 0.5, and as such, solution snapshots for k > 0.5
are unnecessary. This tesults in a total of 55 available POD
shape vectors. In Figure (3), the curves represent the eigen-
values corresponding to the primarily structural natural modes
as mass ratio is varied. Qur method also determines the aeroe-
lastic modes originating from the fluid dynamic modes of the
POD/ROM. For the range of mass ratios (0 < u < 500) swept
through in these parametric analyses, the fluid dynamic modes
are very damped, and as such lie to the left and outside of the
eigenspectrum range we show. As can been, for each of the
Mach numbers, the first structural mode tends to be the criti-

(a) M=0.960

(b) M=1.141

Figure 2: AGRAD 445.6 Wing Surface and Symmetry Plane
Pressure Contours

cal flutter mode. For the highest Mach number however, the
third structural mode can go unstable if the mass ratio is large
enough. Also from this figure, it is evident that it is unneces-
sary to use all 55 of the available POD shapes. If fact, with less
than one half of the POD modes (25 for instance), relatively
converged results (in the sense of POD mode refinement) can
be achieved.

Figure (4) shows the computed POD/ROM flutter speed
and flutter frequency ratios, along with experimental data [8],
and data from two other computational methods ([10]
and [11]) , as a function of Mach number. As can be seen,
using our methodology, we produce the well known transonic
flutter speed dip, and our results are all within the same tol-
erance to the experimental results as the other computational
methods. Gupta [11] does show better agreement with ex-
periment at the two supersonic Mach numbers, and Gupta at-
tributes this better agreement to better CFD grid refinement.
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In the final paper, we will also address this issue.

Figure (5) again shows the computed POM/ROM flutter
speed and flutter frequency ratios as a function of Mach num-
ber. In this instance however, the flutter results are shown for
various fractions of the total available POD shapes. As can
be seen, even with as few as 1/2 of the available shapes, rela-
tively well converged results are obtained. Note however there
is somewhat greater sensitivity to the number of POD/ROM
modes retained at the supersonic Mach numbers.

THE USE OF ALTERNATE MODAL
EXCITATIONS FOR SNAPSHOTS
One of the key concerns towards in the POD/ROM method
to three-dimensional flows has been whether or not an entire
set of solution snapshots must be computed for each possible
structural configuration of interest. That is, say we wish to
consider a similarly shaped wing that has a slightly different
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Figure 4: Mach Number Flutter Trend for the AGRAD 445.6
Wing “Weakened” Configuration, ao = 0.0 (deg)

structural configuration, which in turn means the wing vibra-
tory mode shapes are different. Does this mean that one has
to go through and compute a whole new ensemble of solu-
tion snapshots based on these new structural motions in order
to do a flutter analysis for the new wing configuration. For-
tunately, as we will demonstrate in the following, although a
few snapshots based on the new modal motion will need to
be computed, the larger number of snapshots computed at nu-
merous frequencies will be unnecessary. The snapshots com-
puted from a previous wing structural configuration will still
serve the purpose. That is, a couple of solution snapshots will
be needed for the new structural motions, however, these will
only need to be computed at the end points of the frequency
range of interest. Figure (6) demonstrates how this works.
Figure (6a) shows the real and imaginary parts of the coef-
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ficient of the generalized aerodynamic force corresponding to
the first mode pressure acting through the first mode shape asa
function of reduced frequency at a Mach number 0f 0.960. The
coefficient of the generalized aerodynamic force is defined as

q:cg / / ¢i pj(k)n dA

where goo = poolUZ2 /2 is the freestream dynamic pressure
and ¢, is the root chord length. The integral is evaluated over
the surface of the wing, and n, is z component of the wing
surface normal vector (i.e. i = n,§ + nyj + nzﬁ and 11 is
oriented to point towards the wing surface). In this definition,
p;(k) represents the frequency dependent unsteady pressure

CQi,j(k) = (8)

resulting from a wing deformation motion of

z
Cr = %

(9)

The curves presented in Figure (6a) are based on the actual
solution snapshots and thus are what we desire the POD/ROM
to model. In Figure (6b), the POD/ROM of Cg, , based on
snapshots for each of the five structural mode shapes at fre-
quencies of k = 0.0 and k = 1.0 (for a total of 10 snapshots)
is compared against Cg, , for the actual snapshots for all fre-
quencies between k = 0.0 and k = 1.0. As can be seen, the
POD/ROM matches at the end points of the frequency range
as is expected, however this crude POD/ROM performs rather
poorly for the intermediate frequencies. Of course, if we use
snapshots at all the frequencics between k=0.0and k = 1.0,
the POD/ROM would exactly reproduce the data.

Next, in Figure (6c), a new POD/ROM for Cgp, , now
based on solution snapshots unrelated to the actual mode
shapes is shown. The simple wing motion snapshots are for a
full wing plunge motion (up/down), full wing pitch about the
quarter chord, a first bending type of motion (wing is fixed at
the root, and the z coordinate component of deflection varies
linearly with span), and a first twist type of motion (wing is
fixed at the root, and the pitch varies linearly with span) for
frequencies from k = 0.0to k = 1.0 at Ak = 0.1 incre-
ments for a total of 44 solution snapshots. As can be seen,
the POD/ROM in this case also perform very poorly. Unbe-
knownst however, these solutions are in fact helping to reveal
the dynamics of the system. In fact, when one uses these snap-
shots in combination with the actual structural mode snapshots
solely at the end points of the frequency range of interest,
one gets a POD/ROM which produces very accurate results
to Cq, , as is evident from Figure (6d). "

Figure (7) shows a comparison of the POD/ROM Mach
number flutter trends in the case where first, the POD/ROM is
based on solution snapshots corresponding to the actual modal
shapes of the wing to the case where second, the POD/ROM is
based on snapshots using the simple wing motion mode shapes
as discussed in the previous paragraph. As for the previous
Mach number flutter results (Figures (4) and (5), the snapshot
reduced frequencies range from k = 0.0to k = 0.5 in Ak =
0.1 increments. Included u this second ensemble of solution
snapshots, are the snapshots corresponding to the particular
motions of the actual mode shapes at the end points of the
frequency range of interest.

As can be seen in Figure (7), one can obtain accurate
POD/ROM flutter results using solution snapshots unrelated
to the actual wing motions (except at the end points of the fre-
quency range of interest) that compare very well to the flutter
results based on a POD/ROM model using snapshots corre-
sponding to the actual motions. This is especially true at the
lower Mach numbers. There is some difference at the high-
est Mach number, again suggesting supersonic flow is more
sensitive for this wing. '

To further illustrate the concept of being able to use solely
the frequency range of interest end point snapshots, we present
a few results for a simple two-dimensional configuration that
first led us to the idea of the using the technique in three-
dimensions. In an analogous situation of having to consider
multiple structural degrees of freedom in three-dimensions, we
first consideied an unsteady NACA 64A010A airfoil configu-




ration that not only under goes typical plunge and pitch mo-
tions (see Figures (8a) and (8b), but also has motions where
airfoil mean camber line distorts based on simple trigono-
metric functions. i.e. z.(z) = & cos(2nz/c) (Figure 8c),
ze(z) = 8sin(2nz/c) (Figure 8d), z.(z) = 03 cos(drzfc)
(Figure 8¢), etc. The initial question was, as one considers
each subsequent motion, does one have to include a number of
snapshots based on the new motion that is equal to the num-
ber of snapshots for each of the previous motions in order to
produce an accurate POD/ROM.

Figure (9) illustrates how after a sufficient number of snap-
shots have been inctuded in the snapshot ensemble, only the
end point frequencies are required for each additional motion.
In this instance, the NACA 64A010A airfoil is modeled in a
M=0.5, ag = 0.0 (deg) background flow, and shownon the ab-
scissa are increments in the number of overall motions consid-
ered. Shown on the ordinate is the order in which the snapshots
for each particular motion are added to the overall ensemble.
The reduced frequency range of interest is 0.0 < &k < 1.0
(note, k for this airfoil problem is defined as k = we/Ux),
and thus the first two snapshots considered for each motion
correspond the end points of this frequency range. Further
snapshots added to the ensemble for a given motion are done
so in a divide and conquer strategy to best model the interme-
diate frequencies.

Considered in Figure (9) is the accuracy of modeling the
airfoil unsteady lift and moment along the paths § = ref?
(where § = 90°,60°,120° and 0 < r < 1) in the complex
reduced frequency 5 plane. The curves illustrate the number
of snapshots necessary to achieve a given level of accuracy for
the nt* and all previous motions. The accuracy is based on a
comparison to a POD/ROM that is derived from a snapshot en-
semble comprised of all the possible motions at all the possible
frequencies. So for example, to achieve a 10~2 L, norm ac-
curacy when just considering plunge motion, one needs a total
of ten plunge snapshots of the frequency values indicated on
the ordinate of the plot. If next considering pitch motion, one
would then need to add only three pitch motion snapshots cor-
responding to the frequencies k = 0.0, k = 1.0, and k = 0.5
to the overall ensemble to get 10™3 L, norm accuracy for now
both the pitch and plunge motions. Considering next the first
airfoil bending motion &;, one would then need to add a total
of seven ; snapshots to achieve 10-3 L, norm accuracy for
now plunge, pitch, and §; motion. Three &, snapshots would
then be needed when also taking in account d; motions, two
85 snapshots when considering 85 motions, and so on.

As can be seen, Figure (9) illustrates the interesting re-
sult that after a sufficient number of snapshots have been in-
cluded in the overall ensemble, only the two end point fre-
quency snapshots for each subsequent possible motion need
be added to the ensemble to maintain a given level of accu-
racy. Interestingly enough, this appears to be an asymptotic
limit. That is, the two end point frequency range snapshots al-
ways appear to be necessary when considering a large number
of possible motions.

CONCLUSIONS

The POD/ROM method has been demonstrated for the flut-
ter analysis of a three-dimensional transonic wing configura-
tion. We have shown that the number of ROM DOF’s neces-

sary to create accurate models is on the order of a few dozen
as is the case in two-dimensions. We have also shown that it
is unnecessary to compute a completely new ensemble of so-
lution snapshots based on the vibratory mode shapes for each
new structural configuration that might be under considera-
tion. One can simply compute a set of snapshots based on
some basic wing motions at a number of frequencies. Then
snapshots only at the end points of the frequency range of in-
terest need to be computed for the specific mode shapes of
the configuration of interest. These end point snapshots “lock
in” the unsteady fluid dynamic characteristics for the particu-
lar mode shapes, and the simple motion snapshots then act to
resolve the dominant dynamics of the flow throughout the full
frequency range of interest.

For the final version of the conference paper, will we ir.-
clude more details of the methodology along with further stud-
ies of POD/ROM refinements including mesh convergence is-
sues.
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Figure 8: Airfoil Sample Motions: NACA 64A010A Airfoil Sec-
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